1个回答
展开全部
(1)原式=lim(t->0) (3tx^2+3xt^2+t^3)/t
=lim(t->0) (3x^2+3xt+t^2)
=3x^2
(2)原式=lim(x->∞) [1+e^(-2x)]/[1-e^(-2x)]
=(1+0)/(1-0)
=1
(3)原式=lim(x->0) (2x)^2/x^2
=4
(4)原式=lim(x->∞) {[1-2/(3x+1)]^[-(3x+1)/2]}^[-2x/(3x+1)]
=lim(x->∞) e^[-2/(3+1/x)]
=e^(-2/3)
(5)原式=lim(x->∞) (1+sinx/x)/(1-sinx/x)
=(1+0)/(1-0)
=1
(6)原式=lim(x->0) (x^2/2)*(2x)/x^3
=1
(7)原式=lim(x->∞) x*(1/x)
=1
(8)极限不存在
(9)原式=lim(x->∞) (x^2+1-x^2+1)/[√(x^2+1)+√(x^2-1)]
=lim(x->∞) 2/[√(x^2+1)+√(x^2-1)]
=0
=lim(t->0) (3x^2+3xt+t^2)
=3x^2
(2)原式=lim(x->∞) [1+e^(-2x)]/[1-e^(-2x)]
=(1+0)/(1-0)
=1
(3)原式=lim(x->0) (2x)^2/x^2
=4
(4)原式=lim(x->∞) {[1-2/(3x+1)]^[-(3x+1)/2]}^[-2x/(3x+1)]
=lim(x->∞) e^[-2/(3+1/x)]
=e^(-2/3)
(5)原式=lim(x->∞) (1+sinx/x)/(1-sinx/x)
=(1+0)/(1-0)
=1
(6)原式=lim(x->0) (x^2/2)*(2x)/x^3
=1
(7)原式=lim(x->∞) x*(1/x)
=1
(8)极限不存在
(9)原式=lim(x->∞) (x^2+1-x^2+1)/[√(x^2+1)+√(x^2-1)]
=lim(x->∞) 2/[√(x^2+1)+√(x^2-1)]
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询