1个回答
展开全部
V=4∫(0,π/2) 2π(π-x)ydx
=8π∫(0,π/2) (π-x)(cosx)^4 dx
=8π²∫(0,π/2) (cosx)^4dx-8π∫(0,π/2) x(cosx)^4dx
∫(0,π/2) (cosx)^4dx
=sinxcos³x |(0,π/2)+3∫(0,π/2) cos²x(1-cos²x)dx
=3∫(0,π/2) cos²x-3∫(0,π/2) (cosx)^4dx
→∫(0,π/2) (cosx)^4dx=3/4 ∫(0,π/2) cos²xdx=3/4 ×1/2 ∫(0,π/2) dx=3π/16
∫(0,π/2) x(cosx)^4dx
=∫(0,π/2) xcos³xdsinx
=-∫(0,π/2) sinx(cos³x-3xcos²xsinx)dx
=∫(0,π/2) (3xcos²xsin²x-sinxcos³x)dx
=∫(0,π/2) [3xcos²x-3x(cosx)^4-sinxcos³x]dx
→
∫(0,π/2) x(cosx)^4dx=1/4 ∫ (0,π/2) (3xcos²x-sinxcos³x)dx
=3/4 ∫ (0,π/2) xcos²xdx-1/4 ∫(0,π/2
=8π∫(0,π/2) (π-x)(cosx)^4 dx
=8π²∫(0,π/2) (cosx)^4dx-8π∫(0,π/2) x(cosx)^4dx
∫(0,π/2) (cosx)^4dx
=sinxcos³x |(0,π/2)+3∫(0,π/2) cos²x(1-cos²x)dx
=3∫(0,π/2) cos²x-3∫(0,π/2) (cosx)^4dx
→∫(0,π/2) (cosx)^4dx=3/4 ∫(0,π/2) cos²xdx=3/4 ×1/2 ∫(0,π/2) dx=3π/16
∫(0,π/2) x(cosx)^4dx
=∫(0,π/2) xcos³xdsinx
=-∫(0,π/2) sinx(cos³x-3xcos²xsinx)dx
=∫(0,π/2) (3xcos²xsin²x-sinxcos³x)dx
=∫(0,π/2) [3xcos²x-3x(cosx)^4-sinxcos³x]dx
→
∫(0,π/2) x(cosx)^4dx=1/4 ∫ (0,π/2) (3xcos²x-sinxcos³x)dx
=3/4 ∫ (0,π/2) xcos²xdx-1/4 ∫(0,π/2
追问
V=4∫(0,π/2) 2π(π-x)ydx 这个4哪来的。。。
追答
旋转体可以看成一个横截面不规则的环
y=(cosx)^4与y=-(cosx)^4所围成的面积为
S=4∫(0,π/2) (cosx)^4dx
=4×3/4×1/2×π/2=3/4 π
V=S·H=3π/4 ×2π×π=3π³/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询