∫(1-x²)/x√x dx求不定积分
1个回答
展开全部
令x=sinu,√(1-x²)=cosu,dx=cosudu
∫1/(x+√(1-x²))dx
=∫1/(sinu+cosu)*(cosu)du
=∫cosu/(sinu+cosu)du
=1/2∫(cosu+sinu+cosu-sinu)/(sinu+cosu)du
=1/2∫(cosu+sinu)/(sinu+cosu)du+1/2∫(cosu-sinu)/(sinu+cosu)du
=1/2∫1du+1/2∫1/(sinu+cosu)d(sinu+cosu)
=(1/2)u+(1/2)ln|sinu+cosu|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x²)|+C
∫1/(x+√(1-x²))dx
=∫1/(sinu+cosu)*(cosu)du
=∫cosu/(sinu+cosu)du
=1/2∫(cosu+sinu+cosu-sinu)/(sinu+cosu)du
=1/2∫(cosu+sinu)/(sinu+cosu)du+1/2∫(cosu-sinu)/(sinu+cosu)du
=1/2∫1du+1/2∫1/(sinu+cosu)d(sinu+cosu)
=(1/2)u+(1/2)ln|sinu+cosu|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x²)|+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |