哪位高数大佬讲解下,拉格朗日数乘法?
1个回答
展开全部
设给定二元函数z=ƒ(x,y)和附加条件φ(x,y)=0,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数 ,其中λ为参数。
令F(x,y,λ)对x和y和λ的一阶偏导数等于零,即
F'x=ƒ'x(x,y)+λφ'x(x,y)=0[1]
F'y=ƒ'y(x,y)+λφ'y(x,y)=0
F'λ=φ(x,y)=0
由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。
若这样的点只有一个,由实际问题可直接确定此即所求的点。
几何意义
设给定目标函数为 ,约束条件为 。[1]
如图所示,曲线 为约束条件 , 为目标函数的等值线族。
在 、 偏导数都连续的条件下,目标函数 在约束条件 下的可能极值点 ,从几何上看,必是目标函数等值线曲线族中与约束条件曲线能相切的那个切点。
因为两曲线在切点处必有公法线,所以目标函数等值线在点 处法向量 与约束条件曲线在点 处法向量 平行,即
也就是说,存在实数 ,使下式成立
需要注意的是,目标函数等值线与约束条件曲线的切点未必就是目标函数 在约束条件 下的极值点(如图中的 点)。
令F(x,y,λ)对x和y和λ的一阶偏导数等于零,即
F'x=ƒ'x(x,y)+λφ'x(x,y)=0[1]
F'y=ƒ'y(x,y)+λφ'y(x,y)=0
F'λ=φ(x,y)=0
由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。
若这样的点只有一个,由实际问题可直接确定此即所求的点。
几何意义
设给定目标函数为 ,约束条件为 。[1]
如图所示,曲线 为约束条件 , 为目标函数的等值线族。
在 、 偏导数都连续的条件下,目标函数 在约束条件 下的可能极值点 ,从几何上看,必是目标函数等值线曲线族中与约束条件曲线能相切的那个切点。
因为两曲线在切点处必有公法线,所以目标函数等值线在点 处法向量 与约束条件曲线在点 处法向量 平行,即
也就是说,存在实数 ,使下式成立
需要注意的是,目标函数等值线与约束条件曲线的切点未必就是目标函数 在约束条件 下的极值点(如图中的 点)。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询