展开全部
2. 令√x = u, I = ∫<1, +∞>2udu/(u+u^3) = 2∫<1, +∞>du/(1+u^2)
= 2[arctanu]<1, +∞> = 2(π/4) = π/2.
4. I = (1/2)∫<2, +∞>lnxd(x^2-1)/(x^2-1)^2 = (-1/2)∫<2, +∞>lnxd[1/(x^2-1)]
= (-1/2)[lnx/(x^2-1)]<2, +∞> + (1/2)∫<2, +∞>[1/(x^2-1)](1/x)dx
= (1/6)ln2 + (1/4)∫<2, +∞>[1/(x-1)+1/(x+1)-2/x]dx
= (1/6)ln2 + (1/4)[ln[(x^2-1)/x^2]<2, +∞>
= (1/6)ln2 - (1/4)ln3 + (1/2)ln2 = (2/3)ln2 - (1/4)ln3
= 2[arctanu]<1, +∞> = 2(π/4) = π/2.
4. I = (1/2)∫<2, +∞>lnxd(x^2-1)/(x^2-1)^2 = (-1/2)∫<2, +∞>lnxd[1/(x^2-1)]
= (-1/2)[lnx/(x^2-1)]<2, +∞> + (1/2)∫<2, +∞>[1/(x^2-1)](1/x)dx
= (1/6)ln2 + (1/4)∫<2, +∞>[1/(x-1)+1/(x+1)-2/x]dx
= (1/6)ln2 + (1/4)[ln[(x^2-1)/x^2]<2, +∞>
= (1/6)ln2 - (1/4)ln3 + (1/2)ln2 = (2/3)ln2 - (1/4)ln3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询