
微分方程y'- y-x=0的通解
1个回答
展开全部
求微分方程y'=y/(y-x)的通解
解:dy/dx=(y/x)/[(y/x)-1]...............(1)
令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入(1)式得:
u+x(du/dx)=u/(u-1),x(du/dx)=[u/(u-1)]-u=(2u-u²)/(u-1),分离变量得:
[(u-1)/(2u-u²)]du=dx/x,积分之:
∫[(u-1)/(2u-u²)]du=lnx
左边=∫[(u-1)/u(2-u)]du=∫[1/(2-u)-1/u(2-u)]du=∫{1/(2-u)-(1/2)[(1/u)+1/(2-u)]}du
=(1/2)∫[1/(2-u)-(1/u)]du=(1/2)[-ln(u-2)-lnu]-lnc₁
故有(1/2)[-ln(u-2)-lnu]=lnc₁+lnx=ln(c₁x)
ln[(u-2)u]=-2ln(c₁x),(u-2)u=1/(c₁x)²
将u=y/x代入即得通解为:[(y/x)-2](y/x)=1/(c₁x)²,即y(y-2x)=c为所求。
解:dy/dx=(y/x)/[(y/x)-1]...............(1)
令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入(1)式得:
u+x(du/dx)=u/(u-1),x(du/dx)=[u/(u-1)]-u=(2u-u²)/(u-1),分离变量得:
[(u-1)/(2u-u²)]du=dx/x,积分之:
∫[(u-1)/(2u-u²)]du=lnx
左边=∫[(u-1)/u(2-u)]du=∫[1/(2-u)-1/u(2-u)]du=∫{1/(2-u)-(1/2)[(1/u)+1/(2-u)]}du
=(1/2)∫[1/(2-u)-(1/u)]du=(1/2)[-ln(u-2)-lnu]-lnc₁
故有(1/2)[-ln(u-2)-lnu]=lnc₁+lnx=ln(c₁x)
ln[(u-2)u]=-2ln(c₁x),(u-2)u=1/(c₁x)²
将u=y/x代入即得通解为:[(y/x)-2](y/x)=1/(c₁x)²,即y(y-2x)=c为所求。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询