求f(x)=1/(1+x+x^2) 在x=0处的N阶导数
2个回答
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
f(x)*(1+x+x^2)=1,用leibniz公式求n阶导得
f^n(x)*(1+x+x^2)+nf^(n-1)(x)*(1+2x)+n(n-1)f^(n-2)(x)=0,
令x=0代入得
an+na(n-1)+n(n-1)a(n-2)=0,其中an=f^n(0)。
易知a0=1,a1=-1,可以用数学归纳法证明
a(3n)=(3n)!,a(3n+1)=-(3n+1)!,a(3n+2)=0。
f^n(x)*(1+x+x^2)+nf^(n-1)(x)*(1+2x)+n(n-1)f^(n-2)(x)=0,
令x=0代入得
an+na(n-1)+n(n-1)a(n-2)=0,其中an=f^n(0)。
易知a0=1,a1=-1,可以用数学归纳法证明
a(3n)=(3n)!,a(3n+1)=-(3n+1)!,a(3n+2)=0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询