中位数与平均数的区别是什么?
中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
平均数的作用。
平均数既可以用它来反映一组数据的一般情况和平均水平,也可以用它进行不同组数据的比较,分析组与组之间的差别。用平均数能直观简明表示一组数据的情况,如平均速度、平均身高、平均产量、平均成绩、平均收入等等。例如,我们要比较北京和山西两地居民收入水平,无法将这两个地方的每一个家庭的收入一一进行比较,最简单直接的方法就是比较两地居民的平均收入水平。
算术平均数是最常用的一种平均指标,几何平均数多用于计算比率平均数,它受极端值影响较算术平均数小。
中位数与平均数在计算方法以及数据变动的影响上面有明显区别。
一、计算方法
平均数用所有数据相加的总和除以数据的个数,需要计算才得求出。(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
中位数将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
二、数据变动的影响
平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
扩展资料:
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。
例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
众数算出来是销售最常用的,代表最多的。
2. 中位数:将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数)叫做这组数据的中位数。中位数的大小仅与数据的排列位置有关。因此中位数不受偏大和偏小数的影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3. 众数:在一组数据中出现次数最多的数据叫做这组数据的众数。因此求一组数据的众数既不需要计算,也不需要排序,而只要数出出现次数较多的数据的频率就行了。众数与概率有密切的关系。众数的大小仅与一组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,它的众数也往往是我们关心的一种集中趋势。
从这三个数的意义可知,这三个统计量都是表示一组数据的集中趋势情况,由于每个数表示的意义不同,因此,一般情况下一组数据的平均数、中位数、众数也往往不同.那如何使用这三个统计量呢,我认为这个没有明确的规定,要根据研究对象的具体情况,看哪个统计量最能反映这组数据的一般水平就用哪个。
平均数是所有样本之和再除以样本数
举个例子
1
,2,3,5,9
这组样本的
中位数
=3
平均数=(1+2+3+5+9)/5=4