已知粒子运动半径,如何求其可能出现的区域
1个回答
展开全部
一匀强磁场的磁感应强度大小为B;方向向里,其边界是半径为R的圆,AB为圆的直径.在A点有一粒子源向圆平面内(垂直于磁场)的各个方向发射质量m、电量-q的粒子,粒子重力不计.
(1)有一带电粒子以v1=
2qBRm
的速度从A点进入圆形区域,恰好从B点射出.求此粒子在磁场中运动的时间t.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子从A点沿半径方向射入磁场,与绝缘弹性边界碰撞3次后又能恰好回到A点,则该粒子的速度v2为多大?
(3)若在A点的粒子源向圆平面内的各个方向发射速度均为v3=
qBR2m
的粒子.试在乙图中用阴影图画出粒子在磁场中所能到达的区域,并求出该区域的面积.
(1)粒子进入磁场后由洛伦兹力提供向心力做匀速圆周运动,由牛顿第二定律求出轨迹的半径,由几何知识求解轨迹对应的圆心角α,由t=α2πT求解粒子在磁场中运动的时间.
(2)粒子沿半径方向射入磁场,经过2次碰撞后回到A点,画出粒子运动的轨迹,由几何知识求出轨迹的半径,即可求出该粒子的速度.
解答解:(1)由洛伦兹力提供向心力,qv1B=mv21r1
得r1=2R
粒子的运动轨迹如图所示,则其对应的圆心角α=π3
运动时间
t=α2πT=πm3qB
(2)由题意画出粒子运动的轨迹如图2,
由几何关系得r2=R
由qv2B=mv22r2得v2=qBRm
(3)粒子的轨道半径r3=mv3qB=R2
粒子到达的区域为图中的阴影部分(如图所示)
区域面积为S=12πr23+2×16π(2r3)2-√3r23=1124πR2-√34R2
答:(1)有一带电粒子以v1=2qBRm的速度从A点进入圆形区域,恰好从B点射出.此粒子在磁场中运动的时间t=πm3qB.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子从A点沿半径方向射入磁场,与绝缘弹性边界碰撞3次后又能恰好回到A点,则该粒子的速度为v2=qBRm;
(3)若在A点的粒子源向圆平面内的各个方向发射速度均为v3=qBR2m的粒子.在乙图中用阴影图画出粒子在磁场中所能到达的区域如图,该区域的面积S=1124πR2-√34R2.
(1)有一带电粒子以v1=
2qBRm
的速度从A点进入圆形区域,恰好从B点射出.求此粒子在磁场中运动的时间t.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子从A点沿半径方向射入磁场,与绝缘弹性边界碰撞3次后又能恰好回到A点,则该粒子的速度v2为多大?
(3)若在A点的粒子源向圆平面内的各个方向发射速度均为v3=
qBR2m
的粒子.试在乙图中用阴影图画出粒子在磁场中所能到达的区域,并求出该区域的面积.
(1)粒子进入磁场后由洛伦兹力提供向心力做匀速圆周运动,由牛顿第二定律求出轨迹的半径,由几何知识求解轨迹对应的圆心角α,由t=α2πT求解粒子在磁场中运动的时间.
(2)粒子沿半径方向射入磁场,经过2次碰撞后回到A点,画出粒子运动的轨迹,由几何知识求出轨迹的半径,即可求出该粒子的速度.
解答解:(1)由洛伦兹力提供向心力,qv1B=mv21r1
得r1=2R
粒子的运动轨迹如图所示,则其对应的圆心角α=π3
运动时间
t=α2πT=πm3qB
(2)由题意画出粒子运动的轨迹如图2,
由几何关系得r2=R
由qv2B=mv22r2得v2=qBRm
(3)粒子的轨道半径r3=mv3qB=R2
粒子到达的区域为图中的阴影部分(如图所示)
区域面积为S=12πr23+2×16π(2r3)2-√3r23=1124πR2-√34R2
答:(1)有一带电粒子以v1=2qBRm的速度从A点进入圆形区域,恰好从B点射出.此粒子在磁场中运动的时间t=πm3qB.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子从A点沿半径方向射入磁场,与绝缘弹性边界碰撞3次后又能恰好回到A点,则该粒子的速度为v2=qBRm;
(3)若在A点的粒子源向圆平面内的各个方向发射速度均为v3=qBR2m的粒子.在乙图中用阴影图画出粒子在磁场中所能到达的区域如图,该区域的面积S=1124πR2-√34R2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询