在四边形ABCD中∠ABC=∠ADC=90°,E是AC的中点,F是BD的中点,求证:EF垂直BD
1个回答
展开全部
连接EB,ED
因为E是AC中点,∠ABC是直角
所以EB=(1/2)AC
(直角三角形底边上的中线等于底边长的一半)
同理,ED=(1/2)AC
所以EB=ED
所以∠EBF=∠EDF
因为F是BD的中点
所以FB=FD
由MB=MD,NB=ND,∠MBN=∠MDN可证得
△BMN≌△DMN
所以∠BNM=∠DNM
而∠BNM+∠DNM=180°
所以∠BNM=180°/2=90°
所以MN⊥BD
(如果学过等腰三角形底边上的高,中线,对角平分线重合的定理的话后面部分可以直接用这个定理证明)
因为E是AC中点,∠ABC是直角
所以EB=(1/2)AC
(直角三角形底边上的中线等于底边长的一半)
同理,ED=(1/2)AC
所以EB=ED
所以∠EBF=∠EDF
因为F是BD的中点
所以FB=FD
由MB=MD,NB=ND,∠MBN=∠MDN可证得
△BMN≌△DMN
所以∠BNM=∠DNM
而∠BNM+∠DNM=180°
所以∠BNM=180°/2=90°
所以MN⊥BD
(如果学过等腰三角形底边上的高,中线,对角平分线重合的定理的话后面部分可以直接用这个定理证明)
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询