分式加减法要通分(2/a-b)+(1/a+2b)-(2/a+b)+(1/2b-a...
分式加减法要通分(2/a-b)+(1/a+2b)-(2/a+b)+(1/2b-a)(1/1-x)+(1/1+x)+(2/1+x^2)+(4/1+x^4)...
分式加减法要通分(2/a-b)+(1/a+2b)-(2/a+b)+(1/2b-a) (1/1-x)+(1/1+x)+(2/1+x^2)+(4/1+x^4)
展开
1个回答
展开全部
不好意思,昨晚我有事出去了,没能及时为你解答表示歉意.
(1)
原式=2/(a-b)-2/(a+b)+1/(a+2b)-1/(a-2b)
=(2a+2b-2a+2b)/(a²-b²)+(a-2b-a-2b)/(a²-4b²)
=4b/(a²-b²)-4b/(a²-4b²)
=4b[1/(a²-b²)+1/(a²-4b²)]
=4b[(a²-4b²-a²+b²)/(a²-b²)(a²-4b²)]
=4b(-3b²)/[(a²-b²)(a²-4b²)]
=-12b³/[(a²-b²)(a²-4b²)]
(2)
1/(1-X)+1/(1+X)+2/(1+X²)+4/(1+X⁴)
=[(1+X)+(1-X)]/[(1+X)(1-X)]+2/(1+X²)+4/(1+X⁴)
=2/(1-X²)+2/(1+X²)+4/(1+X⁴)
=2[(1+X[)+(1-X²)]/[(1+X²)(1-X²]+4/(1+X⁴)
=4/(1-X⁴)+4/(1+X⁴)
=4[(1+X⁴)+(1-X⁴)]/[(1-X⁴)(1+X⁴)]
=8/(1-X^8)
(1)
原式=2/(a-b)-2/(a+b)+1/(a+2b)-1/(a-2b)
=(2a+2b-2a+2b)/(a²-b²)+(a-2b-a-2b)/(a²-4b²)
=4b/(a²-b²)-4b/(a²-4b²)
=4b[1/(a²-b²)+1/(a²-4b²)]
=4b[(a²-4b²-a²+b²)/(a²-b²)(a²-4b²)]
=4b(-3b²)/[(a²-b²)(a²-4b²)]
=-12b³/[(a²-b²)(a²-4b²)]
(2)
1/(1-X)+1/(1+X)+2/(1+X²)+4/(1+X⁴)
=[(1+X)+(1-X)]/[(1+X)(1-X)]+2/(1+X²)+4/(1+X⁴)
=2/(1-X²)+2/(1+X²)+4/(1+X⁴)
=2[(1+X[)+(1-X²)]/[(1+X²)(1-X²]+4/(1+X⁴)
=4/(1-X⁴)+4/(1+X⁴)
=4[(1+X⁴)+(1-X⁴)]/[(1-X⁴)(1+X⁴)]
=8/(1-X^8)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询