高等数学证明不等式?
展开全部
欲证 tanx/x>x/sinx , 0<x<π/2
即证sinx/(xcosx)>x/sinx,
也就是证 (sinx)^2/cosx>x^2, 即 1/cosx-cosx>x^2
令 f(x)=1/cosx-cosx-x^2(0<x<π/2)
则 f'(x)=sinx+sinx/(cosx)^2-2x,
再令 g(x)=sinx+sinx/(cosx)^2-2x,(0<x<π/2),
则 g'(x)=cosx+1/cosx-2+2(sinx)^2/(cosx)^3
因为1/cosx+cosx>2, 则有:2(sinx)^2/(cosx)^3>0, 所以g'(x)>0
所以 g(x)在0<x<π/2上是增函数
即当x>0时有g(x)>g(0)=0, 即sinx+sinx/(cosx)^2-2x>0,
f'(x)>0所以f(x)在0<x<π/2上是增函数
即当x>0时有f(x)>f(0)=0, 即1/cosx-cosx>x^2,
所以当0<x<π/2时,tanx/x>x/sinx。
即证sinx/(xcosx)>x/sinx,
也就是证 (sinx)^2/cosx>x^2, 即 1/cosx-cosx>x^2
令 f(x)=1/cosx-cosx-x^2(0<x<π/2)
则 f'(x)=sinx+sinx/(cosx)^2-2x,
再令 g(x)=sinx+sinx/(cosx)^2-2x,(0<x<π/2),
则 g'(x)=cosx+1/cosx-2+2(sinx)^2/(cosx)^3
因为1/cosx+cosx>2, 则有:2(sinx)^2/(cosx)^3>0, 所以g'(x)>0
所以 g(x)在0<x<π/2上是增函数
即当x>0时有g(x)>g(0)=0, 即sinx+sinx/(cosx)^2-2x>0,
f'(x)>0所以f(x)在0<x<π/2上是增函数
即当x>0时有f(x)>f(0)=0, 即1/cosx-cosx>x^2,
所以当0<x<π/2时,tanx/x>x/sinx。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询