奇偶性的判断方法是?
奇偶性的判断方法:
(1)定义法
用定义来判断函数奇偶性,是主要方法,首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。
(2)用必要条件
具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。
例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。
(3)用对称性
若f(x)的图象关于原点对称,则 f(x)是奇函数。
若f(x)的图象关于y轴对称,则 f(x)是偶函数。
(4)用函数运算
如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。
类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。
扩展资料:
偶函数在对称区间上的单调性是相反的。奇函数在整个定义域上的单调性一致。两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数。
两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数,一个偶函数与一个奇函数相乘所得的积为奇函数。
几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数,偶函数的和差积商是偶函数。
奇函数的和差是奇函数,奇函数的偶数个积商是偶函数,奇函数的奇数个积商是奇函数,奇函数的绝对值为偶函数,偶函数的绝对值为偶函数。
广告 您可能关注的内容 |