请问这个极限怎么求?
1个回答
展开全部
[(x-sinx)/x^3]' = [(1-cosx)x^3 - 3x^2(x-sinx)]/x^6
= [x(1-cosx) - 3(x-sinx)]/x^4 = (-2x-xcosx+3sinx)/x^4
原式 = lim<x→0>(-2x-xcosx+3sinx)/x^5 (0/0)
= lim<x→0>(-2+xsinx+2cosx)/(5x^4) (0/0)
= lim<x→0>(xcosx-sinx)/(20x^3) (0/0)
= lim<x→0>(-xsinx)/(60x^2) = -1/60
= [x(1-cosx) - 3(x-sinx)]/x^4 = (-2x-xcosx+3sinx)/x^4
原式 = lim<x→0>(-2x-xcosx+3sinx)/x^5 (0/0)
= lim<x→0>(-2+xsinx+2cosx)/(5x^4) (0/0)
= lim<x→0>(xcosx-sinx)/(20x^3) (0/0)
= lim<x→0>(-xsinx)/(60x^2) = -1/60
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询