两个非零矩阵相乘,结果为0,那么这两个矩阵有何特点?
1个回答
展开全部
这意味着第一个矩阵中的所有行向量正交于第二个矩阵中的所有列向量。
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。
一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。
注意事项
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
路径问题
给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数。
把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。
同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询