1个回答
2021-04-20 · 专注大学生职业技能培训在线教育品牌
关注
展开全部
第一、分析可视化
可视化可以直观地显示数据,让数据来说话,让观众听到的结果——不管是对数据分析专家还是一个普通用户,数据进行可视化是数据通过分析研究工具最基本的要求。
第二、Data Mining Algorithms
聚类、分割,还有其他的异常值分析算法,让我们深入内部数据挖掘的价值——可视化是给人看的,数据挖掘是给机器看的。这些学习算法研究不仅要处理大数据的量,也要注意处理大数据的速度。
第三、预测分析功能
数据挖掘可以让分析员更好地理解这些数据,而预测性分析可以让分析员根据可视化技术分析和数据挖掘的结果做出一些企业预测性的判断。
第四、语义引擎
我们知道,由于非结构化数据的多样性带来了新的挑战,对数据进行分析,需要一系列的工具来分析,提取,分析数据。语义引擎需要被进行设计成能够从“文档”中智能技术提取数据信息。
第五、数据质量和主数据管理
数据质量和数据信息管理是一些企业管理工作方面的最佳实践——通过标准化的流程和工具处理数据,确保了定义明确和高质量的分析。
美林数据技术股份有限公司
2019-06-26 广告
2019-06-26 广告
美林数据Tempo大数据分析平台,它是一款集数据接入、数据处理、数据挖掘、数据可视化、数据应用于一体的软件产品。它秉持“智能、互动、增值”的设计理念,面向企业级用户提供自助式数据探索与分析能力,为企业提供从BI到AI的一体化数据分析与应用解...
点击进入详情页
本回答由美林数据技术股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |