展开全部
令x=π+u,则对u积分的区间化为[-π,π],dx=du.
I = ∫<0, 2π>(x-sinx)[1-(cosx)^2)]dx = ∫<0, 2π>(x-sinx)(sinx)^2dx
= ∫<-π, π>(π+u+sinu)(sinu)^2du
= 2π∫<0, π>(sinu)^2du = π∫<0, π>(1-cos2u)du = π^2
题主改题后的解答:
令x=π+u,则对u积分的区间化为[-π, π], dx = du.
I = ∫<0, 2π>(x-sinx)(1-cosx)^2dx
= ∫<-π, π>(π+u+sinu)(1+cosu)^2du
= 2π∫<0, π>(1+cosu)^2du = 2π∫<0, π>[1+2cosu+(cosu)^2]du
= π∫<0, π>[3+4cosu+cos2u]du
= π[3u+4sinu+(1/2)sin2u]<0, π> = 3π^2
I = ∫<0, 2π>(x-sinx)[1-(cosx)^2)]dx = ∫<0, 2π>(x-sinx)(sinx)^2dx
= ∫<-π, π>(π+u+sinu)(sinu)^2du
= 2π∫<0, π>(sinu)^2du = π∫<0, π>(1-cos2u)du = π^2
题主改题后的解答:
令x=π+u,则对u积分的区间化为[-π, π], dx = du.
I = ∫<0, 2π>(x-sinx)(1-cosx)^2dx
= ∫<-π, π>(π+u+sinu)(1+cosu)^2du
= 2π∫<0, π>(1+cosu)^2du = 2π∫<0, π>[1+2cosu+(cosu)^2]du
= π∫<0, π>[3+4cosu+cos2u]du
= π[3u+4sinu+(1/2)sin2u]<0, π> = 3π^2
更多追问追答
追问
(1-cos(x)^2)这里打错了应该是(1-cos(x))^2
追答
见补充解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询