分式有意义的条件
分式有意义的条件是分母不为0,分式值为0的条件是分子为0且分母不为0。分式值为正数或负数的条件是分子分母同号得正,异号得负。
分式条件
1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
分式运算法则
一、约分
根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。
步骤:
1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
二、公因式的提取方法
系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
三、最简分式
一个分式不能约分时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。乘法同分母分式的加减法法则进行计算。两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
四、除法
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。也可表述为:除以一个分式,等于乘以这个分式的倒数。
五、乘方
分子乘方做分子,分母乘方做分母,可以约分的约分。