麦克劳林展开式是什么?
1个回答
展开全部
麦克劳林公式展开式是f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n 。
一般情况下遇到的极限有两种情况:
(1)分子是两个或者以上的函数相加减,这种情况比较简单,只要将两个函数展开到与分母同阶即可。
(2)分子是两个或以上的函数相乘,这种情况比较复杂,主要考虑的是分子相乘会出现的所有与分母同阶的项。
简介。
麦克劳林也是一位实验科学家,设计了很多精巧的机械装置。他不但学术成就斐然,而且关心政治,1745年参加了爱丁堡保卫战。
麦克劳林终生不忘牛顿对他的栽培,并为继承、捍卫、发展牛顿的学说而奋斗。他曾打算写一本《关于伊萨克.牛顿爵士的发现说明》,但未能完成便去世了。死后在他的墓碑上刻有“曾蒙牛顿推荐”几个大字,以表达他对牛顿的感激之情。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询