设a>b>0,求a^2+1/ab+1/a(a-b)的最小值

 我来答
完满且闲雅灬抹香鲸P
2022-07-04 · TA获得超过1.8万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:76.9万
展开全部
a2+1/ab+1/a(a-b)= ab+1/ab+a(a-b)+1/a(a-b)≥4
当且仅当 ab=1/ab,a(a-b)=1/a(a-b)取等号
即 a=√2,b=√2/2取等号.
∴ a2+1/ab+1/a(a-b)的最小值为4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式