求幂级数∑(n+1)/n(x^n)在其收敛域上的和函数
1个回答
展开全部
显然由比值审敛法易知其收敛域为(-1,1)
∑(n+1)/n(x^n)=∑(1+1/n)*x^n=∑x^n+∑(1/n)*x^n=x/(1-x)+∑(1/n)*x^n
令f(x)=∑(1/n)*x^n
则f′(x)=∑x^(n-1)=1/(1-x)
所以f(x)=∫(上x,下0)1/(1-x) dx =-ln(1-x)
所以
∑(n+1)/n(x^n)=x/(1-x)-ln(1-x)
∑(n+1)/n(x^n)=∑(1+1/n)*x^n=∑x^n+∑(1/n)*x^n=x/(1-x)+∑(1/n)*x^n
令f(x)=∑(1/n)*x^n
则f′(x)=∑x^(n-1)=1/(1-x)
所以f(x)=∫(上x,下0)1/(1-x) dx =-ln(1-x)
所以
∑(n+1)/n(x^n)=x/(1-x)-ln(1-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |