对等式AA* =|A|E两边取行列式|AA*| =||A|E|,怎样得到|A| |A*|=|A|^n

 我来答
黑科技1718
2022-06-13 · TA获得超过5899个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.8万
展开全部
利用公式 | kA | = k^n |A| ,及 | AB | =|A| |B|
注意对于| |A|E |中,|A|是一个数
所以对于等式 |AA*| =||A|E|,
左边=|A| |A*|
右边=|A|^n |E| =|A|^n
即|A| |A*|=|A|^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式