解:微分方程为(x²y+2y³)dx-(x³-xy²)dy=0,化为dy/dx=(x²y+2y³)/(x³-xy²),设y=ux,方程化为d(ux)/dx=(x³u+2u³x³)/(x³-u²x³),
xdu/dx+u=(u+2u³)/(1-u²),xdu/dx=3u³/(1-u²),(1-u²)du/u³=3dx/x,du/u³-du/u=3dx/x,-1/2×1/u²-ln|u|=3ln|x|+ln|c|(c为任意非零常数),1/u²=-2ln(cx³u),微分方程的通解为x²=-2y²ln(cyx²)
解常微分方程
请参考,希望对你有帮助