若 ,则x 2 +y 2 +z 2 的最小值为________.

 我来答
白露饮尘霜17
2022-06-28 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6667
采纳率:100%
帮助的人:36.1万
展开全部
分析:
根据柯西不等式可得(x2+y2+z2)≥,由此可得结论.

根据柯西不等式可得(x2+y2+z2)≥∵∴x2+y2+z2≥当且仅当时,x2+y2+z2的最小值为故答案为:
点评:
柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.一般而言,“积和结构”或“平方和结构”越明显,则构造越容易,而对于“积和结构”或“平方和结构”不够明显的问题,则须将原问题作适当变形,使“积和结构”或“平方和结构”明显化,从而利用柯西不等式进行证明.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式