2017小学数学概念教学策略
1个回答
展开全部
小学数学概念是思维的基本单位,小学老师应该根据这个特点来为小学生制定不同的教学概念。下面是我为大家整理的小学数学概念教学策略,希望对大家有所帮助!
小学数学概念教学策略篇一
1.有效的引入是概念形成的基础。
在我这几年的小学数学教学中,我感觉“利用学生身边熟悉的生活例子”或“合适的情境”进行引入,能够让学生构建抽象的概念。我以《体积与容积》一课来 说说 ,体积的定义:物体所占空间的大小。如果我们不结合生活实际,他们是很难理解这一概念的。
我是从乌鸦喝水的 故事 激起学生的兴趣,然后通过设置问题“乌鸦为什么能够喝到瓶中的水?”引出“石头占了水的空间”;再问学生“在我们身边,哪些事物也占了空间?”通过学生思考意识“书包占了教室的空间”“铅笔占了笔盒空间”等物体都是占了空间的。最后,我用一个 魔方 和可爱的小公仔进行比较“谁占空间比较大?”让学生感受物体不仅仅占了空间,而且占的空间是有大有小的。
通过这些生活中的实物,再加上鲜活的例子。学生就能够通过表象特征去抽象出共同的特征,形成概念。学生认知概念后,还要及时强化,让他们在小组内或同桌间,通过拿物体让对方说出”什么是它的体积”。
2.切实地概括是概念形成的前提
以《分数的再认识》为例说一说:通过看图,用分数表示阴影部分。说说从具体概念到抽象概念
(1)把一张纸平均分成4份,取其中的1份,用1/4表示;
(2)把4个苹果平均分成4份,取其中的3份,用3/4表示;
(3)把全部蝴蝶平均分成5组,取其中的3组,用3/5表示;
我们把一张纸,4个苹果,或5组蝴蝶都可以看成一个整体,即单位“1”。综上所述,把一个整体平均分成若干份,取其中的一份或几份,可以用分数表示。
数学概念是“抽象之上的抽象”,它强大的系统性需要我们在教学时结合孩子的年龄特征,采取合适的教学策略开展教学活动,注重概念的现实意义和数学意义,从而提高教学质量。
小学数学概念教学策略篇二
一、提供感性材料,帮助学生建构概念
在学习几何形体概念的过程中,学生要用各种感官去感知概念、听取教师的言语说明,阅读文字符号,进行实际操作,从而了解概念的表征,有选择地把感知的概念的有关信息进行初步概括,形成表象。小学生的思维以直观形象思维为主,在理解概念的过程中,我们可以提供一些感性材料,借助各种教学指导,帮助学生更好地理解概念。当然,在提供感性材料帮助学生理解概念时,根据不同的概念,我们可以采取不同的教学策略。
(一)运用直观教学,帮助学生理解概念
小学生以形象思维为主,如果能借助直观演示,将更容易理解概念的本质。例如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形?”根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要做成三角形的而不做成四边形的呢?同时借助教具的直观演示,进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合 儿童 认知规律的。
(二)通过实验探索,促进学生理解概念
理解几何形体概念的本质,需要动手操作和实验观察相结合,我们要让学生在实验探索的过程中感悟和理解概念,及时引导学生比较操作对象之间的异同点, 总结 出概念的本质属性。如教学“体积”概念时,先要学生理解“任何物体都占有空间”的含义,才能理解体积的概念。为此,我们通过“乌鸦喝水”的故事引入后,提出问题“水为什么会上升?”,初步理解“空间”,然后进一步设问“到底是因为石块有重量还是因为占有空间才使水面上升?别的物体也占有空间吗?”接着请学生设计一个实验,来证明他们的发现,并要求在实验中能紧紧围绕“①是怎样进行实验的?②在实验过程中观察到了什么现象?③这种现象说明了什么?”最后请学生交流汇报,一名同学演示,其他学生边观察边思考:“如果杯中液体的水,变成固体沙,同样把石块放入沙里,会有什么现象发生?”通过小组合作交流,得出结论。结合实例使学生深刻理解了“体积”的概念。
(三)加强概念变式,帮助学生理解概念
变式是指概念的肯定例证在无关特征方面的变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。在几何形体概念的教学中,我们可以充分运用变式来帮助学生更深刻地理解概念。例如,在学习“垂直”的概念时,学生常习惯于竖着理解,过直线外一点作垂线,也习惯于向水平方向画。当变化了直线的方向、位置,就会受思维定势影响,发生错误,以致在位置或形状有了变化的三角形(平行四边形、梯形)中找错、画错高,影响面积的正确计算。其原因就在于“垂直”这个概念的形成阶段未能为学生提供充分的变式材料,学生没能在“两条直线相交成直角”这一本质意义上对“互相垂直”进行抽象概括。在认识和画出三角形(平行四边形、梯形)的高时,也要在变式图形中进行。然后引导学生分析、比较,找出它们的异同点,从而帮助学生从不同方面理解“三角形的高”的本质特征。
二、构建概念的网络体系,深化概念本质
在教学概念时,我们不应该孤立地教概念。在准备教一个新概念之前,要为学生提供一个可把这个概念置于其中的框架,如果孤立地学习概念,将会限制学习的水平。因而在教学中,教师应当采取一些恰当的方式了解学生,找到新旧知识之间、文本知识和生活之间的联结点展开教学,让学生以联系的观点学习新的概念,促进主动建构,形成概念的网络体系。
(一)比较概念的异同,促进概念的认识
通过同类事物的比较,有利于帮助学生发现同类概念的共同和本质的特点。在学习过程中,很多时候存在相近的概念。比如教学“锐角三角形”、“直角三角形”、“钝角三角形”等概念时,给学生提供大量实例,让学生在测量的基础上,把三角形按角分类,并引导学生讨论为什么这样分,分在一组的三角形具有哪些共同特征,最后教师给出三个概念。呈现三种不同类型的三角形,在比较中,使概括更加精细化,进一步明确这些概念的本质特征。
(二)揭示概念间的联系,加深概念的理解
新知识的理解依赖于头脑中已有的知识。在概念教学中,寻求学生原有认知结构中的适当知识是理解新概念的重要基础。例如在“认识平行四边形”的学习中,平行四边形是在学习了正方形、长方形等图形的基础上学习的,可以说,长方形、正方形的知识是学习了平行四边形的上位知识,把握学生知识背景,瞄准学生的最近发展区,可以复习长方形、正方形的特征和探究 方法 ,建立表象,从而请学生通过猜想、操作、验证等方法抽象出平行四边形的特征。然后请学生通过比较、观察、动手操作等方法探索这三种图形之间的关系,找出它们之间的异同点,把分散的图形串联起来,动态联系构建认知结构,经历一个部分到整体的过程,进一步丰富概念的外延,明确概念的本质。
(三)利用图式建立结构,促进概念的内化
图式是指一个有组织的、可重复和概括的东西,是个体对外部世界的知觉、理解和思考方式。我们在帮助学生学习概念时,要有目的地引导学生把相关的概念分类、整理、归纳并用图式表示出来,建立概念结构,促进概念内化。例如,在教学三角形分类时,可以借助韦恩图帮助学生进一步理清各种三角形的本质特征。又如,在复习了平面图形过程中,我们可以引导学生通过比较、概括、分类等方法,逐步画出小学阶段平面图形结构图,从而更进一步地理解各类概念本质和明确概念之间的联系和区别。
总之,促进学生空间思维发展是几何形体概念教学的最高层次。教师只有根据概念的本质,从学生认知特点和现实起点出发,运用各种有效地教学策略,以发展的观点开展教学,在概念的系统中教学概念,建立起概念之间的联系,紧扣概念本质,帮助学生在观察、探索、体验、实践中深入剖析理解概念本质,才能实现几何形体概念的有效教学。
小学数学概念教学策略篇三
一、 数学概念教学的重要性
数学概念是数学知识中最基础的知识和重要组成部分。首先,它具有相对独立性。概念反映的是一类对象的本质属性,即这类对象的内在的、固有的属性,舍去了这一类现象的具体物质属性和具体关系,抽象概括出其中量的关系和形式构造。因此,在某种程度上表现为与原始对象具体内容的相对独立。其次,它是抽象性与具体性的统一。数学概念反映了一类对象的本质属性。以“矩形”概念为例,现实世界中并不能见到抽象的矩形,而只有形形色色的具体的矩形。从这个意义上说,数学概念“脱离”了现实。由于数学中使用了形式化、符号化的语言,使数学概念离现实更远,抽象程度更高。正因为抽象程度高,与现实的原始对象联系弱,才使得数学概念的应用更广泛。不管怎么抽象,高层次的概念总是以低层次的概念为具体内容,且数学概念是数学命题、数学推理的基础部分,就整个数学体系而言,概念是实实在在的。所以,它既是抽象的又是具体的。再次,它还具有逻辑联系性。数学中大多数概念都是在原始概念的基础上形成,并被用逻辑定义的方法,以语言或符号的形式固定,因而具有丰富的内涵和严谨的逻辑联系。在数学概念学习过程中,小学生往往对概念的内涵和外延把握不准,容易对概念产生模糊的认识,以致影响分析问题、解决问题和信息处理的能力。因此,正确理解数学概念是掌握数学基础知识的前提,概念教学是整个数学教学的关键。教师应当加强概念教学,努力使学生对概念理解透彻、掌握牢固、应用灵活,并设法培养学生的思维能力和解题技能,从而提高教学质量。
在小学数学教学过程中,学生数学能力的培养、数学问题的解决,实际上是运用概念做出判断、进行推理的过程。在概念、判断、推理这三种思维形式中,概念作为思维的“细胞”,是判断和推理的前提。没有正确的概念,就不可能有正确的判断和推理,更谈不上 逻辑思维 能力的培养。因此,学好概念是学好数学最重要的一环。从小学数学概念教学的实际来看,学生对概念的态度大体有两种:一种认为基本概念单调乏味,不重视它,不求甚解,导致对概念的认识和理解模糊。另一种是重视基本概念但只是死记硬背,而不能真正透彻理解,这样必然严重影响学生对数学基础知识和基本技能的掌握和运用。只有真正掌握了数学中的基本概念,学生才能把握数学的知识系统,才能正确、合理、迅速地进行运算、论证和空间想象。从一定意义上说,数学水平的高低,关键是在对数学概念的理解、应用和转化等方面的差异。;因此,抓好概念教学是培养数学能力的根本一环。
影响小学数学概念教学的因素很多。一方面,在教学中教师对概念教学的重视程度是影响教学的主要外部因素。在概念教学中,教师往往刻意关注概念表述的“精确”,而忽视其实质和实际的背景;强调定义、定理的字斟句酌推敲,而忽视其发生、发展的过程和反映的基本事实和现象;过分追求逻辑严谨和体系的形式化,而忽视学生在一定年龄阶段的思维所应该具有的形象性。另一方面,《小学数学课程标准》中指出,小学数学基础知识中的概念主要包括:数的概念、集合图形的概念、四则运算的概念、计量的概念、比和比例的概念、式的概念等。这些概念具有较强的抽象性、概括性等特征,本身也给概念教学带来了难度。
就小学生个体而言,由于年龄较小,缺乏足够的感性材料和实际生活 经验 ,抽象逻辑思维能力、语言理解能力等较差,这些因素都会影响小学数学概念教学的成效。
小学生学习数学概念,往往是利用概念的同化和概念的形成这两种方式。概念的同化需要学生从已有的认知结构中,检索出与新概念有联系的概念,通过相互作用提示新概念的本质属性。学生个体之间的智力是有差别的,即便是同一年龄或同一年级的学生,由于智力发展的程度不同,达到相应的学习水平的速度也不一样,其主要原因是学生的认知策略和元认知水平的差别。概念的形成主要依靠学生的直接经验,从大量的感性材料中进行抽象概括,提示概念的本质属性,从而形成概念。小学数学的概念教学有明显的认知直观性,需要有具体的经验作支持。因此,学生原有认知结构中概念的清晰度和稳固程度、原有生活经验和得到的感性材料的丰富性,将对概念教学起着重要作用。
学生的抽象概括能力和语言表达能力,都是影响概念教学效果的内部因素,值得关注。在概念的形成过程中,学生通过观察客观事物,发现事物的各种属性,然后把本质属性从中抽象出来。在掌握了概念的内容后,再把这些本质属性推广到同类事物中,才能对概念所反映的同类事物有普遍的认识,这才算理解了概念。比如,教学长方形概念时,应先让学生观察具有长方形的各种实物,引导学生找出他们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。如果缺乏必要的抽象概括能力,概念的内涵和外延就会出现片面扩大或缩小的错误。学生的语言表达能力对数学概念教学也相当重要。如果数学语言表达能力差,必然对概念的表述不够准确,就会影响到概念的理解、巩固和运用。比如,“半径”的准确定义应该是:“连接圆心到圆上任意一点的线段叫做圆的半径。”如果学生把它说成是圆心到圆的距离,无疑就会在实际运用中产生偏差。
二、 数学概念优化的策略
小学数学概念的教学,一般要经过概念的引入、概念的建立、概念的巩固和概念的深化等环节。这是一个复杂的思维过程,既是知识的再创造、概念的逐步理解过程,又是改善学生思维品质、发展学生思维能力、培养学生创新意识和创造能力的过程。
1、 概念的引入
概念的引入是数学概念教学的第一步,直接关系到学生对概念的理解和掌握程度。
形象直观地引入。小学生掌握概念是一个主动的、复杂的认识过程,他们的 抽象思维 是直接与感性经验相联系的。因此,首先应提供丰富而典型的感性材料,使他们通过直观形象,逐步抽象、内化成概念。形象直观地引入概念,就是通过小学生所熟悉的生活实例以及生动形象的比喻,提出问题,引入概念;或者采用教具、模型、图表、投影演示及动手操作等,增加学生的感性认识,然后逐步抽象,引入概念。在这一过程中,应该重视生活实例在引入概念中的作用。数学来自现实生活,生活中处处有数学,结合生活实际引入概念符合小学生的心理特点和认知规律。比如,在教学三角形的特点时,可以让学生思考:在实际生活中哪些地方用到了“三角形”?自行车的三角架、支撑房顶的梁架、电线杆上的三角架等,为什么都做成三角架而不做成四边形呢?通过生活中的实例,来提示三角形具有稳定性的特点。利用学生熟悉的生活实际中的一些事物或实例,使其获得感性认识,便于在此基础上引入概念。现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的实际操作引入概念,可以使抽象的概念具体化。操作活动,对学生思维能力的发展有着极大的推动作用。教学中,可以让学生亲自动手,量一量、分一分、算一算、摆一摆,从中获得第一手的感性材料,为抽象概括出新概念打下基础。比如,教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算一算周长是直径的几倍。让学生自己发现圆的大小虽然不同,但周长总是直径的3倍多一些。这时教师引入概念:圆周长是同圆直径的3倍多,是个固定的数,称为“圆周率”。
从原有概念的基础上引入。数学概念之间的联系十分紧密,因此可以从学生已有的概念知识基础上加以引申,直接导出新概念。这样,既巩固了旧知识,又学习了新概念,强化了新旧知识的内在联系,能帮助学生建立系统、完整的概念体系,充分调动学习的积极性和主动性。比如,在“整除”概念基础上建立“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。又如,在几何知识中,可以由长方形的面积导出正方形、平行四边形、三角形、梯形等面积公式。
从计算方法引入。指通过计算发现问题,通过计算引出概念。有些概念不便运用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质属性,达到引出概念的目的。比如,教学“倒数”的认识时,可以先给出两个数相乘乘积是1的几个算式,让学生计算出结果,再观察、分析,从中发现规律,引出“倒数”的定义。
2、概念的建立
概念的建立是概念教学的中心环节。感知和经验只是入门的导向,对概念本质属性的揭示才能成为判断的依据。
利用变式。所谓变式,是指提供的事例或材料不断地变换呈现形式,改变非本质属性,使本质属性“恒在”,借此可以帮助学生准确形成概念。感性材料的表现形式对数学概念的学习和掌握有重要影响,如果给学生提供的感性材料都是一些“标准”的实物或图形,那么学生在概念的理解上就难免出现片面性。利用变式,可以使学生透过现象看到本质,真正掌握概念。
利用对比辨析。建立概念时,对一些临近的、易混淆的数学概念,应该及时进行对比辨析,弄清它们之间的联系和区别。如最大公约数和最小公倍数;整除和除尽;正比例、反比例和不成比例的量等。这样,既可以巩固概念,又能使新概念清晰,有助于学生概念系统的逐步形成。
利用反面衬托。反面衬托即举出概念的反例,可直接举反例说明,也可从正反两方面分析,是进行概念教学的有效方法。学生通过接触这些与概念相关的正反例子,能进一步加深对概念的理解。
多层次、分阶段建立概念体系。概念的理解不是一次完成的,要有一个长期的、反复的认识过程。同样,一个完整的概念体系的建立也要多层次、分阶段进行。比如,在教学“分数的初步认识”时,可以分成三个层次来教学:第一是突出把一个分数“平均分”以后“取份”;第二是解决“份数”与“整体”的关系;第三是明确单位“1”可以是一个物体,也可以是一类物体的集合体。通过这样反复的概念教学,学生不但能够很好地掌握分数的基本概念,而且为继续学习分数的本质属性打下了良好的基础。
3、概念的巩固与深化
从认识的过程来说,形成概念是从感性认识上升到理性认识的过程。即从个别的事例中总结出一般性的规律,巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。小学生数学概念的掌握不是一蹴而就的,必须通过及时的巩固来加深对概念的理解。
巩固概念一般采用熟记、应用并建立概念系统等方法来进行。熟记,就是要求学生对概念定义在理解的基础上通过反复感知、反复回忆等手段达到熟练记忆。应用,则是指学生在应用概念中,达到巩固概念的作用,其主要形式是练习。比如,教学“分数乘法的意义”后,让学生说说3÷4×5,5×3÷4,2÷3×3÷4等的意义。又如,学了“圆的认识”后,让学生判断图中哪条线段为圆的半径,哪条线段为圆的直径。
学生的认识是由浅入深、由具体到抽象的发展过程,而学生数学知识又是分段进行,概念教学也是分段安排的。因此,概念教学既要重视概念的阶段性,又要注意到概念发展的连续性,要有计划地发展概念的含义,按阶段发展学生的抽象概括能力。通过运用,加深学生对概念的认识,使学生找出概念间的纵向与横向联系,形成系统的认识结构,达到深化概念的目的。
总之,小学数学概念教学的各阶段环环相扣。引入概念后要紧接着建立概念,建立后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在概念教学中,要结合概念的特点和学生的实际,灵活设计不同的环节,采取多种教学策略,使学生在掌握数学概念的同时,提高数学能力。
看过"小学数学概念教学策略 "的还看了:
1. 小学数学复习教学策略
2. 浅谈小学数学主题图的教学策略与作用分析
3. 小学数学教学发展趋势分析
小学数学概念教学策略篇一
1.有效的引入是概念形成的基础。
在我这几年的小学数学教学中,我感觉“利用学生身边熟悉的生活例子”或“合适的情境”进行引入,能够让学生构建抽象的概念。我以《体积与容积》一课来 说说 ,体积的定义:物体所占空间的大小。如果我们不结合生活实际,他们是很难理解这一概念的。
我是从乌鸦喝水的 故事 激起学生的兴趣,然后通过设置问题“乌鸦为什么能够喝到瓶中的水?”引出“石头占了水的空间”;再问学生“在我们身边,哪些事物也占了空间?”通过学生思考意识“书包占了教室的空间”“铅笔占了笔盒空间”等物体都是占了空间的。最后,我用一个 魔方 和可爱的小公仔进行比较“谁占空间比较大?”让学生感受物体不仅仅占了空间,而且占的空间是有大有小的。
通过这些生活中的实物,再加上鲜活的例子。学生就能够通过表象特征去抽象出共同的特征,形成概念。学生认知概念后,还要及时强化,让他们在小组内或同桌间,通过拿物体让对方说出”什么是它的体积”。
2.切实地概括是概念形成的前提
以《分数的再认识》为例说一说:通过看图,用分数表示阴影部分。说说从具体概念到抽象概念
(1)把一张纸平均分成4份,取其中的1份,用1/4表示;
(2)把4个苹果平均分成4份,取其中的3份,用3/4表示;
(3)把全部蝴蝶平均分成5组,取其中的3组,用3/5表示;
我们把一张纸,4个苹果,或5组蝴蝶都可以看成一个整体,即单位“1”。综上所述,把一个整体平均分成若干份,取其中的一份或几份,可以用分数表示。
数学概念是“抽象之上的抽象”,它强大的系统性需要我们在教学时结合孩子的年龄特征,采取合适的教学策略开展教学活动,注重概念的现实意义和数学意义,从而提高教学质量。
小学数学概念教学策略篇二
一、提供感性材料,帮助学生建构概念
在学习几何形体概念的过程中,学生要用各种感官去感知概念、听取教师的言语说明,阅读文字符号,进行实际操作,从而了解概念的表征,有选择地把感知的概念的有关信息进行初步概括,形成表象。小学生的思维以直观形象思维为主,在理解概念的过程中,我们可以提供一些感性材料,借助各种教学指导,帮助学生更好地理解概念。当然,在提供感性材料帮助学生理解概念时,根据不同的概念,我们可以采取不同的教学策略。
(一)运用直观教学,帮助学生理解概念
小学生以形象思维为主,如果能借助直观演示,将更容易理解概念的本质。例如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形?”根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要做成三角形的而不做成四边形的呢?同时借助教具的直观演示,进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合 儿童 认知规律的。
(二)通过实验探索,促进学生理解概念
理解几何形体概念的本质,需要动手操作和实验观察相结合,我们要让学生在实验探索的过程中感悟和理解概念,及时引导学生比较操作对象之间的异同点, 总结 出概念的本质属性。如教学“体积”概念时,先要学生理解“任何物体都占有空间”的含义,才能理解体积的概念。为此,我们通过“乌鸦喝水”的故事引入后,提出问题“水为什么会上升?”,初步理解“空间”,然后进一步设问“到底是因为石块有重量还是因为占有空间才使水面上升?别的物体也占有空间吗?”接着请学生设计一个实验,来证明他们的发现,并要求在实验中能紧紧围绕“①是怎样进行实验的?②在实验过程中观察到了什么现象?③这种现象说明了什么?”最后请学生交流汇报,一名同学演示,其他学生边观察边思考:“如果杯中液体的水,变成固体沙,同样把石块放入沙里,会有什么现象发生?”通过小组合作交流,得出结论。结合实例使学生深刻理解了“体积”的概念。
(三)加强概念变式,帮助学生理解概念
变式是指概念的肯定例证在无关特征方面的变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。在几何形体概念的教学中,我们可以充分运用变式来帮助学生更深刻地理解概念。例如,在学习“垂直”的概念时,学生常习惯于竖着理解,过直线外一点作垂线,也习惯于向水平方向画。当变化了直线的方向、位置,就会受思维定势影响,发生错误,以致在位置或形状有了变化的三角形(平行四边形、梯形)中找错、画错高,影响面积的正确计算。其原因就在于“垂直”这个概念的形成阶段未能为学生提供充分的变式材料,学生没能在“两条直线相交成直角”这一本质意义上对“互相垂直”进行抽象概括。在认识和画出三角形(平行四边形、梯形)的高时,也要在变式图形中进行。然后引导学生分析、比较,找出它们的异同点,从而帮助学生从不同方面理解“三角形的高”的本质特征。
二、构建概念的网络体系,深化概念本质
在教学概念时,我们不应该孤立地教概念。在准备教一个新概念之前,要为学生提供一个可把这个概念置于其中的框架,如果孤立地学习概念,将会限制学习的水平。因而在教学中,教师应当采取一些恰当的方式了解学生,找到新旧知识之间、文本知识和生活之间的联结点展开教学,让学生以联系的观点学习新的概念,促进主动建构,形成概念的网络体系。
(一)比较概念的异同,促进概念的认识
通过同类事物的比较,有利于帮助学生发现同类概念的共同和本质的特点。在学习过程中,很多时候存在相近的概念。比如教学“锐角三角形”、“直角三角形”、“钝角三角形”等概念时,给学生提供大量实例,让学生在测量的基础上,把三角形按角分类,并引导学生讨论为什么这样分,分在一组的三角形具有哪些共同特征,最后教师给出三个概念。呈现三种不同类型的三角形,在比较中,使概括更加精细化,进一步明确这些概念的本质特征。
(二)揭示概念间的联系,加深概念的理解
新知识的理解依赖于头脑中已有的知识。在概念教学中,寻求学生原有认知结构中的适当知识是理解新概念的重要基础。例如在“认识平行四边形”的学习中,平行四边形是在学习了正方形、长方形等图形的基础上学习的,可以说,长方形、正方形的知识是学习了平行四边形的上位知识,把握学生知识背景,瞄准学生的最近发展区,可以复习长方形、正方形的特征和探究 方法 ,建立表象,从而请学生通过猜想、操作、验证等方法抽象出平行四边形的特征。然后请学生通过比较、观察、动手操作等方法探索这三种图形之间的关系,找出它们之间的异同点,把分散的图形串联起来,动态联系构建认知结构,经历一个部分到整体的过程,进一步丰富概念的外延,明确概念的本质。
(三)利用图式建立结构,促进概念的内化
图式是指一个有组织的、可重复和概括的东西,是个体对外部世界的知觉、理解和思考方式。我们在帮助学生学习概念时,要有目的地引导学生把相关的概念分类、整理、归纳并用图式表示出来,建立概念结构,促进概念内化。例如,在教学三角形分类时,可以借助韦恩图帮助学生进一步理清各种三角形的本质特征。又如,在复习了平面图形过程中,我们可以引导学生通过比较、概括、分类等方法,逐步画出小学阶段平面图形结构图,从而更进一步地理解各类概念本质和明确概念之间的联系和区别。
总之,促进学生空间思维发展是几何形体概念教学的最高层次。教师只有根据概念的本质,从学生认知特点和现实起点出发,运用各种有效地教学策略,以发展的观点开展教学,在概念的系统中教学概念,建立起概念之间的联系,紧扣概念本质,帮助学生在观察、探索、体验、实践中深入剖析理解概念本质,才能实现几何形体概念的有效教学。
小学数学概念教学策略篇三
一、 数学概念教学的重要性
数学概念是数学知识中最基础的知识和重要组成部分。首先,它具有相对独立性。概念反映的是一类对象的本质属性,即这类对象的内在的、固有的属性,舍去了这一类现象的具体物质属性和具体关系,抽象概括出其中量的关系和形式构造。因此,在某种程度上表现为与原始对象具体内容的相对独立。其次,它是抽象性与具体性的统一。数学概念反映了一类对象的本质属性。以“矩形”概念为例,现实世界中并不能见到抽象的矩形,而只有形形色色的具体的矩形。从这个意义上说,数学概念“脱离”了现实。由于数学中使用了形式化、符号化的语言,使数学概念离现实更远,抽象程度更高。正因为抽象程度高,与现实的原始对象联系弱,才使得数学概念的应用更广泛。不管怎么抽象,高层次的概念总是以低层次的概念为具体内容,且数学概念是数学命题、数学推理的基础部分,就整个数学体系而言,概念是实实在在的。所以,它既是抽象的又是具体的。再次,它还具有逻辑联系性。数学中大多数概念都是在原始概念的基础上形成,并被用逻辑定义的方法,以语言或符号的形式固定,因而具有丰富的内涵和严谨的逻辑联系。在数学概念学习过程中,小学生往往对概念的内涵和外延把握不准,容易对概念产生模糊的认识,以致影响分析问题、解决问题和信息处理的能力。因此,正确理解数学概念是掌握数学基础知识的前提,概念教学是整个数学教学的关键。教师应当加强概念教学,努力使学生对概念理解透彻、掌握牢固、应用灵活,并设法培养学生的思维能力和解题技能,从而提高教学质量。
在小学数学教学过程中,学生数学能力的培养、数学问题的解决,实际上是运用概念做出判断、进行推理的过程。在概念、判断、推理这三种思维形式中,概念作为思维的“细胞”,是判断和推理的前提。没有正确的概念,就不可能有正确的判断和推理,更谈不上 逻辑思维 能力的培养。因此,学好概念是学好数学最重要的一环。从小学数学概念教学的实际来看,学生对概念的态度大体有两种:一种认为基本概念单调乏味,不重视它,不求甚解,导致对概念的认识和理解模糊。另一种是重视基本概念但只是死记硬背,而不能真正透彻理解,这样必然严重影响学生对数学基础知识和基本技能的掌握和运用。只有真正掌握了数学中的基本概念,学生才能把握数学的知识系统,才能正确、合理、迅速地进行运算、论证和空间想象。从一定意义上说,数学水平的高低,关键是在对数学概念的理解、应用和转化等方面的差异。;因此,抓好概念教学是培养数学能力的根本一环。
影响小学数学概念教学的因素很多。一方面,在教学中教师对概念教学的重视程度是影响教学的主要外部因素。在概念教学中,教师往往刻意关注概念表述的“精确”,而忽视其实质和实际的背景;强调定义、定理的字斟句酌推敲,而忽视其发生、发展的过程和反映的基本事实和现象;过分追求逻辑严谨和体系的形式化,而忽视学生在一定年龄阶段的思维所应该具有的形象性。另一方面,《小学数学课程标准》中指出,小学数学基础知识中的概念主要包括:数的概念、集合图形的概念、四则运算的概念、计量的概念、比和比例的概念、式的概念等。这些概念具有较强的抽象性、概括性等特征,本身也给概念教学带来了难度。
就小学生个体而言,由于年龄较小,缺乏足够的感性材料和实际生活 经验 ,抽象逻辑思维能力、语言理解能力等较差,这些因素都会影响小学数学概念教学的成效。
小学生学习数学概念,往往是利用概念的同化和概念的形成这两种方式。概念的同化需要学生从已有的认知结构中,检索出与新概念有联系的概念,通过相互作用提示新概念的本质属性。学生个体之间的智力是有差别的,即便是同一年龄或同一年级的学生,由于智力发展的程度不同,达到相应的学习水平的速度也不一样,其主要原因是学生的认知策略和元认知水平的差别。概念的形成主要依靠学生的直接经验,从大量的感性材料中进行抽象概括,提示概念的本质属性,从而形成概念。小学数学的概念教学有明显的认知直观性,需要有具体的经验作支持。因此,学生原有认知结构中概念的清晰度和稳固程度、原有生活经验和得到的感性材料的丰富性,将对概念教学起着重要作用。
学生的抽象概括能力和语言表达能力,都是影响概念教学效果的内部因素,值得关注。在概念的形成过程中,学生通过观察客观事物,发现事物的各种属性,然后把本质属性从中抽象出来。在掌握了概念的内容后,再把这些本质属性推广到同类事物中,才能对概念所反映的同类事物有普遍的认识,这才算理解了概念。比如,教学长方形概念时,应先让学生观察具有长方形的各种实物,引导学生找出他们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。如果缺乏必要的抽象概括能力,概念的内涵和外延就会出现片面扩大或缩小的错误。学生的语言表达能力对数学概念教学也相当重要。如果数学语言表达能力差,必然对概念的表述不够准确,就会影响到概念的理解、巩固和运用。比如,“半径”的准确定义应该是:“连接圆心到圆上任意一点的线段叫做圆的半径。”如果学生把它说成是圆心到圆的距离,无疑就会在实际运用中产生偏差。
二、 数学概念优化的策略
小学数学概念的教学,一般要经过概念的引入、概念的建立、概念的巩固和概念的深化等环节。这是一个复杂的思维过程,既是知识的再创造、概念的逐步理解过程,又是改善学生思维品质、发展学生思维能力、培养学生创新意识和创造能力的过程。
1、 概念的引入
概念的引入是数学概念教学的第一步,直接关系到学生对概念的理解和掌握程度。
形象直观地引入。小学生掌握概念是一个主动的、复杂的认识过程,他们的 抽象思维 是直接与感性经验相联系的。因此,首先应提供丰富而典型的感性材料,使他们通过直观形象,逐步抽象、内化成概念。形象直观地引入概念,就是通过小学生所熟悉的生活实例以及生动形象的比喻,提出问题,引入概念;或者采用教具、模型、图表、投影演示及动手操作等,增加学生的感性认识,然后逐步抽象,引入概念。在这一过程中,应该重视生活实例在引入概念中的作用。数学来自现实生活,生活中处处有数学,结合生活实际引入概念符合小学生的心理特点和认知规律。比如,在教学三角形的特点时,可以让学生思考:在实际生活中哪些地方用到了“三角形”?自行车的三角架、支撑房顶的梁架、电线杆上的三角架等,为什么都做成三角架而不做成四边形呢?通过生活中的实例,来提示三角形具有稳定性的特点。利用学生熟悉的生活实际中的一些事物或实例,使其获得感性认识,便于在此基础上引入概念。现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的实际操作引入概念,可以使抽象的概念具体化。操作活动,对学生思维能力的发展有着极大的推动作用。教学中,可以让学生亲自动手,量一量、分一分、算一算、摆一摆,从中获得第一手的感性材料,为抽象概括出新概念打下基础。比如,教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算一算周长是直径的几倍。让学生自己发现圆的大小虽然不同,但周长总是直径的3倍多一些。这时教师引入概念:圆周长是同圆直径的3倍多,是个固定的数,称为“圆周率”。
从原有概念的基础上引入。数学概念之间的联系十分紧密,因此可以从学生已有的概念知识基础上加以引申,直接导出新概念。这样,既巩固了旧知识,又学习了新概念,强化了新旧知识的内在联系,能帮助学生建立系统、完整的概念体系,充分调动学习的积极性和主动性。比如,在“整除”概念基础上建立“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。又如,在几何知识中,可以由长方形的面积导出正方形、平行四边形、三角形、梯形等面积公式。
从计算方法引入。指通过计算发现问题,通过计算引出概念。有些概念不便运用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质属性,达到引出概念的目的。比如,教学“倒数”的认识时,可以先给出两个数相乘乘积是1的几个算式,让学生计算出结果,再观察、分析,从中发现规律,引出“倒数”的定义。
2、概念的建立
概念的建立是概念教学的中心环节。感知和经验只是入门的导向,对概念本质属性的揭示才能成为判断的依据。
利用变式。所谓变式,是指提供的事例或材料不断地变换呈现形式,改变非本质属性,使本质属性“恒在”,借此可以帮助学生准确形成概念。感性材料的表现形式对数学概念的学习和掌握有重要影响,如果给学生提供的感性材料都是一些“标准”的实物或图形,那么学生在概念的理解上就难免出现片面性。利用变式,可以使学生透过现象看到本质,真正掌握概念。
利用对比辨析。建立概念时,对一些临近的、易混淆的数学概念,应该及时进行对比辨析,弄清它们之间的联系和区别。如最大公约数和最小公倍数;整除和除尽;正比例、反比例和不成比例的量等。这样,既可以巩固概念,又能使新概念清晰,有助于学生概念系统的逐步形成。
利用反面衬托。反面衬托即举出概念的反例,可直接举反例说明,也可从正反两方面分析,是进行概念教学的有效方法。学生通过接触这些与概念相关的正反例子,能进一步加深对概念的理解。
多层次、分阶段建立概念体系。概念的理解不是一次完成的,要有一个长期的、反复的认识过程。同样,一个完整的概念体系的建立也要多层次、分阶段进行。比如,在教学“分数的初步认识”时,可以分成三个层次来教学:第一是突出把一个分数“平均分”以后“取份”;第二是解决“份数”与“整体”的关系;第三是明确单位“1”可以是一个物体,也可以是一类物体的集合体。通过这样反复的概念教学,学生不但能够很好地掌握分数的基本概念,而且为继续学习分数的本质属性打下了良好的基础。
3、概念的巩固与深化
从认识的过程来说,形成概念是从感性认识上升到理性认识的过程。即从个别的事例中总结出一般性的规律,巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。小学生数学概念的掌握不是一蹴而就的,必须通过及时的巩固来加深对概念的理解。
巩固概念一般采用熟记、应用并建立概念系统等方法来进行。熟记,就是要求学生对概念定义在理解的基础上通过反复感知、反复回忆等手段达到熟练记忆。应用,则是指学生在应用概念中,达到巩固概念的作用,其主要形式是练习。比如,教学“分数乘法的意义”后,让学生说说3÷4×5,5×3÷4,2÷3×3÷4等的意义。又如,学了“圆的认识”后,让学生判断图中哪条线段为圆的半径,哪条线段为圆的直径。
学生的认识是由浅入深、由具体到抽象的发展过程,而学生数学知识又是分段进行,概念教学也是分段安排的。因此,概念教学既要重视概念的阶段性,又要注意到概念发展的连续性,要有计划地发展概念的含义,按阶段发展学生的抽象概括能力。通过运用,加深学生对概念的认识,使学生找出概念间的纵向与横向联系,形成系统的认识结构,达到深化概念的目的。
总之,小学数学概念教学的各阶段环环相扣。引入概念后要紧接着建立概念,建立后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在概念教学中,要结合概念的特点和学生的实际,灵活设计不同的环节,采取多种教学策略,使学生在掌握数学概念的同时,提高数学能力。
看过"小学数学概念教学策略 "的还看了:
1. 小学数学复习教学策略
2. 浅谈小学数学主题图的教学策略与作用分析
3. 小学数学教学发展趋势分析
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询