用正弦定理证明余弦定理
1个回答
展开全部
由正弦定理:a/sinA=b/sinB=c/sinC=2R,
得:a/(2R)=sinA,b/(2R)=sinB,c/(2R)=sinC.
进而得:(a^2+b^2-2ab×cosC)/(2R)^2=(sinA)^2+(sinB)^2-2sinAsinBcosC
=(sinA)^2+(sinB)^2-2sinAsinBcos(180°-A-B)
=(sinA)^2+(sinB)^2+2sinAsinBcos(A+B)
=(sinA)^2+(sinB)^2+2sinAsinB(cosAcosB-sinAsinB)
=(sinA)^2+(sinB)^2+2sinAsinBcosAcosB-2(sinAsinB)^2
=[(sinA)^2-(sinAsinB)^2]+[(sinB)^2-(sinAsinB)^2]+2sinAcosBcosAsinB
=(sinA)^2[1-(sinB)^2]+(sinB)^2[1-(sinA)^2]+2sinAcosBcosAsinB
=(sinAcosB)^2+(cosAsinB)^2+2sinAcosBcosAsinB
=(sinAcosB+cosAsinB)^2
=[sin(A+B)]^2
=[sin(180°-C)]^2
=(sinC)^2
=c^2/(2R)^2
两边同时乘以(2R)^2,得:a^2+b^2-2ab×cosC=c^2
得:a/(2R)=sinA,b/(2R)=sinB,c/(2R)=sinC.
进而得:(a^2+b^2-2ab×cosC)/(2R)^2=(sinA)^2+(sinB)^2-2sinAsinBcosC
=(sinA)^2+(sinB)^2-2sinAsinBcos(180°-A-B)
=(sinA)^2+(sinB)^2+2sinAsinBcos(A+B)
=(sinA)^2+(sinB)^2+2sinAsinB(cosAcosB-sinAsinB)
=(sinA)^2+(sinB)^2+2sinAsinBcosAcosB-2(sinAsinB)^2
=[(sinA)^2-(sinAsinB)^2]+[(sinB)^2-(sinAsinB)^2]+2sinAcosBcosAsinB
=(sinA)^2[1-(sinB)^2]+(sinB)^2[1-(sinA)^2]+2sinAcosBcosAsinB
=(sinAcosB)^2+(cosAsinB)^2+2sinAcosBcosAsinB
=(sinAcosB+cosAsinB)^2
=[sin(A+B)]^2
=[sin(180°-C)]^2
=(sinC)^2
=c^2/(2R)^2
两边同时乘以(2R)^2,得:a^2+b^2-2ab×cosC=c^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
GamryRaman
2023-06-12 广告
2023-06-12 广告
恒电位仪测量极化曲线的原理是通过测量电极在不同电位下的电流变化,来确定电极的极化程度和电位值。具体来说,恒电位仪会将电极依次恒定在不同的数值上,然后通过测量对应于各电位下的电流来计算电极的极化程度和电位值。在测量过程中,为了尽可能接近体系的...
点击进入详情页
本回答由GamryRaman提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询