求一阶微分方程(x+y^3)dy=ydx的通解.

 我来答
完满且闲雅灬抹香鲸P
2022-07-20 · TA获得超过1.8万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:83.7万
展开全部
x‘=dx/dy=xy+x^2y^3,同除以x^2得
--x'/x^2+y/x+y^3=0,即
d(1/x)/dy+y(1/x)+y^3=0.令1/x=u
于是u'+yu+y^3=0,通解为
u=--2(y^2/2--1)+Ce^(--y^2/2).
即1/x=Ce^(--y^2/2)+2--y^2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式