概率中的P{X>
展开全部
∵X~N(3,4),∴(X-3)/2~N(0,1)。
∴(1),P{丨X丨>2}=P(X>2)+P(X<-2)。
而P(X>2)=P[(x-3)/2>(2-3)/2=-1/2]=1-Φ(-1/2)=Φ(1/2);P(X<-2)=P[(x-3)/2<(-2-3)/2=-5/2]=Φ(-5/2)=1-Φ(5/2)。查标准正态分布表Φ(1/2)=0.6915、Φ(5/2)=0.9938,
∴P{丨X丨>2}=Φ(1/2)+1-Φ(5/2)=0.6915+1-0.9938=0.6977。
(2),P{X>3}=P[(x-3)/2>(3-3)/2=0]=1-Φ(0)。而Φ(0)=1/2,∴P{X>3}=1-1/2=1/2供参考。
扩展资料:
在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P (A) 表示。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询