求二重积分∫∫D(x+1)dδ,D:由曲线y=x^2,y=x 围成的区域?

 我来答
黑科技1718
2022-11-12 · TA获得超过5874个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.8万
展开全部
积分区域D为:0《x《1,x²《y《x
∫∫D(x+1)dδ
= ∫(0,1) (x+1)dx ∫(x²,x)dy
= ∫(0,1) (x+1)(x-x²)dx
= ∫(0,1) (x - x³)dx
= [x²/2-x^4/4] |(0,1)
=1/2-1/4=1/4,7,∫∫D (x + 1) dσ
= ∫(0,1) ∫(x²,x) (x + 1) dydx
= ∫(0,1) (x + 1) [y] |(x²,x) dx
= ∫(0,1) (x + 1)(x - x²) dx
= ∫(0,1) (1 + x) * x(1 - x) dx
= ∫(0,1) (x - x³) dx
= [x²/2 - x⁴/4] |(0,1)
= 1/2 - 1/4
= 1/4,2,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式