已知ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5,求abc/(ab+bc+ac)
已知ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5,求abc/(ab+bc+ac)
ab/(a+b)=1/3 两边分子分母对调
(带销晌a+b)/ab=3
1/b+1/a=3
同理有
1/c+1/b=4
1/a+1/c=5
上面蠢锋三个式子相加
2(1/a+1/b+1/c)=12
(1/a+1/b+1/c)=6
abc/(ab+bc+ac)
=1/(1/c+1/b+1/a) 分子分母同除以abc
=1/6
ab/(a+b)=1/3,bc/(b+c)=1/4,ac/(a+c)=1/5,求abc/(ab+bc+ac)
∵ab/(a+b)=1/3,bc/(b+c)=1/4,ac/(a+c)=1/5,
取倒数:
∴(a+b)(ab)=3,(b+c)/(bc)=4,(a+c)/(ac)=5
∴1/b+1/c=3,1/b+1/c=4,1/c+1/a=5
相加:斗好
2/a+2/b+2/c=3+4+5=12
∴1/a+1/b+1/c=6
通分:
(bc+ac+ab)/(abc)=6
取倒数:
abc/(ab+bc+ac)=1/6
已知ab/(a+b)=1/3,bc/(b+c)=1/4,ac/(a+c)=1/5,求代数式abc/(ab+bc+ac)的值
ab/(a+b)=1/3
取倒数
(a+b)/ab=3
a/ab+b/ab=3
1/b+1/a=3
同理
1/b+1/c=4
1/a+1/c=5
相加
2(1/a+1/b+1/c)=12
1/a+1/b+1/c=6
通分
(ab+bc+ca)/abc=6
取倒数
abc/(ab+bc+ca)=1/6
ab/a+b=1/2 bc/b+c=1/3 ac/a+c=1/7 求abc/ab+bc+ac
解法:
设 abc/ab+bc+ac = k
则 1/k = ab+bc+ac/abc = 1/c + 1/a + 1/b
ab/a+b = 1/2 --> a+b/ab = 2 --> 1/b + 1/a = 2
ba/b+c = 1/3 --> b+c/bc = 3 --> 1/c + 1/b = 3
ac/a+c = 1/7 --> a+c/ac = 7 --> 1/c + 1/a = 7
上面三式相加
得到 1/k =6
则 k = 1/6
已知ab/a+b=1/3 bc/a+c=1/4 ac/a+c=1/5 求abc/ab+ac+bc
解:因为ab/(a+b)=1/3, bc/(a+c)=1/4 ,ac/(a+c)=1/5
所以1/a+1/b=b/ab+a/ab=(a+b)/ab=3
1/b+1/c=c/bc+b/bc=(c+b)/bc=4
1/a+1/c=c/ac+a/ac=(c+a)/ac=5
三式两边相加就有
2(1/c+1/b+1/a)=3+4+5=12
又因为(ab+ac+bc )/abc
=1/c+1/b+1/a=6
所以abc/(ab+ac+bc)=1/6
已知ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5,求abc/ab+ac+bc的值
ab/(a+b)=1/3(1)
bc/(b+c)=1/4(2)
ac/(a+c)=1/5(3)
abc/(ab+ac+bc)=t
(ab+ac+bc)/abc=1/t
ab/abc+ac/abc+bc/abc=1/t
1/c+1/b+1/a=1/t
(1)两边取倒数:(a+b)/ab=3,a/ab+b/ab=3,1/b+1/a=3(4)
(2)两边取倒数:(b+c)/bc=4,b/bc+c/bc=4,1/c+1/b=4(5)
(3)两边取倒数:(a+c)/ac=5,a/ac+c/ac=5,1/c+1/a=5(6)
(4)+(5)+(6) 1/b+1/a+1/c+1/b+1/c+1/a=3+4+5
2x1/b+1/ax2+1/cx2=12
2(1/b+1/a+1/c)=12
1/a+1/b+1/c=6
6=1/t
t=1/6
abc/(ab+ac+bc)=1/6
答:该表示式是1/6
已知:ab/(a+b)=1/3,bc/(b+c)=1/4,ac/(a+c)=1/5,求abc/(a+b+c)。
ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5可以取倒数得出a+b/ab=3,b+c/bc=4,a+c/ac=5分解有
1/a+1/b=3,1/b+1/c=4,1/a+1/c=5,解得
a=1/2,b=1,c=1/3由此可得
1/a+1/b+1/c=6得
abc/ab+bc+ca=1/(1/a+1/b+1/c)=1/6
已知ab/a+b=1/3,bc/b+c=1/4,ac/a+c=1/5,求abc/ab+ac+bc是多少
ab/(a+b)=1/3
(a+b)/ab=3
则a/ab+b/ab=3
1/b+1/a=3
同理
1/c+1/b=4
1/c+1/a=5
相加
2(1/a+1/b+1/c)=12
1/a+1/b+1/c=6
(ab+bc+ca)/abc=6
所以原式=1/6