椭圆双曲线抛物线 为什么叫圆锥曲线
圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。
平面截圆锥曲线方法:
1、当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2、当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3、当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4、当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。
5、当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。
6、当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。
7、当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
扩展资料:
光学性质
1、椭圆
从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上。
2、双曲线
从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上。
3、抛物线
从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的对称轴。
一束平行光垂直于抛物线的准线,向抛物线的开口射进来,经抛物线反射后,反射光线汇聚在抛物线的焦点。
参考资料来源:百度百科-圆锥曲线