直线与圆相切的公式推论:
解:设圆是(x-a)^2+(y-b)^2=r^2.
那么在(x1,y1)点与圆相切的直线方程是:(x1-a)(x-a)+(y1-b)(y-b)=r^2
直线和圆相切,直线和圆有唯一公共点,叫做直线和圆相切。
可以通过比较圆心到直线的距离d与圆半径r的大小、或者方程组、或者利用切线的定义来证明。
证明方法:
解的情况来判别。
直线与圆的位置关系还可以通过比较圆心到直线的距离d与圆半径r的大小来判别。
利用切线的定义,在已知条件中有"半径与一条直线交于半径的外端",于是只需直接证明这条直线垂直于半径的外端。