
函数f(x)=x^+2x-3(x0) 求零点个数
1个回答
展开全部
这问题不难,但是你题目是不是不全,我姑且认为你当x<=0表达式为x^2+2x-3
当x<=0时,f(x)=x^2+2x-3=(x+1)^2-4,令f(x)=0,可以得到x=-3或x=1(舍去)
当x>0时,f(x)=-2+ln(x),f'(x)=1/x,所以f(x)是单调递增函数,且f(e^2)=0,所以在x>=0的区间就一个零点,
综上可得,函数f(x)有两个零点
当x<=0时,f(x)=x^2+2x-3=(x+1)^2-4,令f(x)=0,可以得到x=-3或x=1(舍去)
当x>0时,f(x)=-2+ln(x),f'(x)=1/x,所以f(x)是单调递增函数,且f(e^2)=0,所以在x>=0的区间就一个零点,
综上可得,函数f(x)有两个零点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询