函数的左右导数相等一定可导吗,为什么?

 我来答
是你找到了我
高粉答主

2022-09-15 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43.4万
展开全部

函数在某一点的左右导数相等,那么在这一点不一定是可导。例如,可去间断点:左极限和右极限存在且相等但是该点没有定义。

给定一个函数f(x),对该函数在x0取左极限和右极限。f(x)在x0处的左、右极限均存在的间断点称为第一类间断点。若f(x)在x0处得到左、右极限均存在且相等的间断点,称为可去间断点。可去间断点是不连续的。可去间断点可以用重新定义Xo处的函数值使新函数成为连续函数

扩展资料:

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

函数可导的充分必要条件:函数可导的充要条件:左导数和右导数都存在并且相等。

函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。 

参考资料来源:百度百科-可去间断点

小不爱吃瓜1Q
2023-07-25
知道答主
回答量:1
采纳率:0%
帮助的人:220
展开全部
一定可导,那些说不一定可导的脑子有泡吧,说什么因为左右导相等不一定连续,拜托左右导存在一定是连续的,你给我找出来个有左右导数相等不连续的!不会就不要误人子弟
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式