线性代数的重点

 我来答
baochuankui888
高粉答主

2022-12-06 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9792
展开全部

设 λ 是A的特征值,α是A的属于特征值λ的特征向量

则 Aα = λα.

等式两边左乘 A*,得

A*Aα = λA*α.

由于 A*A = |A|E 所以

|A| α = λA*α.

当A可逆时,λ 不等于0.

此时有 A*α = (|A|/λ)α

所以 |A|/λ 是 A* 的特征值.

特征值的关系是:

当A可逆时, 若 λ是A的特征值, α 是A的属于特征值λ的特征向量,则 |A| / λ 是 A*的特征值, α 仍是A*的属于特征值 |A| / λ 的特征向量

扩展资料:

线性函数的概念:

线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。

含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

所谓“线性”,指的就是如下的数学关系:  其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算。

也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系  的线性算子f都有哪几类,以及他们分别都有什么性质

参考资料:百度百科——线性函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式