函数可导的必要条件是什么?
展开全部
选C,必要条件。
①如果连续但不一定可导
②可导一定连续
证明:
函数f(x)在x0处可导,f(x)在x0临域有定义
对于任意小的ε>0,存在⊿x=1/[2f’(x0)]>0,使:
-ε<[f(x0+⊿x)-f(x0)<ε
这可从导数定义推出
函数的近代定义
是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询