如何证明当x→0时,y=(1+x)^(1/x)的极限为1

 我来答
华源网络
2022-08-16 · TA获得超过5616个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:150万
展开全部
书上应该讲了重要的基本极限(1+x)^(1/x)=e(当x→0)或x→无穷,(1+1/x)^x=e
那么用左边除以右边,若当x→0,极限为1,则说明左边和右边在x→0时是等价无穷小,命题即得证.左右两边同乘方(1/X),相除,得e/[(1+x)^(1/x)]=e/e=1,所以原式成立.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式