f(x)=sin2x+√3cos2x-2√3的单调递增区间?
1个回答
展开全部
先化简,得到:
f(x) = 2 * [1/2 * sin(2x) + √3/2 * cos(2x)] - 2√3
= 2 * [sin(2x) * cos(π/3) + cos(2x) * sin(π/3)] - 2√3
= 2sin(2x+π/3) - 2√3
= 2sinα - 2√3 令 α = 2x+π/3
我们知道,对于 sinα,它的单增区间为:2kπ-π/2 ≤ α ≤ 2kπ+π/2
那么,也就是说:
2kπ-π/2 ≤ 2x+π/3 ≤ 2kπ+π/2
2kπ-5π/6 ≤ 2x ≤ 2kπ+π/6
所以,kπ-5π/12 ≤ x ≤ kπ+π/12, k∈Z
f(x) = 2 * [1/2 * sin(2x) + √3/2 * cos(2x)] - 2√3
= 2 * [sin(2x) * cos(π/3) + cos(2x) * sin(π/3)] - 2√3
= 2sin(2x+π/3) - 2√3
= 2sinα - 2√3 令 α = 2x+π/3
我们知道,对于 sinα,它的单增区间为:2kπ-π/2 ≤ α ≤ 2kπ+π/2
那么,也就是说:
2kπ-π/2 ≤ 2x+π/3 ≤ 2kπ+π/2
2kπ-5π/6 ≤ 2x ≤ 2kπ+π/6
所以,kπ-5π/12 ≤ x ≤ kπ+π/12, k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询