分离常数法怎么用
分离常数法怎么用:用于求函数最值或值域等。
分离常数法介绍如下:
分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。
还有一种常见的应用方式是在分式型函数中,当分式的分子和分母次数相同时,常可分离出一个常数来,也称之分离常数法。
对于求分式型的函数,常采用拆项使分式的分子为常数,有些分式函数可以拆项分成一个整式和一个分式(该分式的分子为常数)的形式,这种方法叫分离常数法。分离常数法常用于求函数最值或值域等,在数列求和中也常用到,可参考例题理解。
还有一种分离常数法的应用方式是在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),可参考“适用条件”。
在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围,如:已知函数在区间(-1,1)上有唯一的零点,求a的取值范围。
可转化为“关于x的方程在(-1,1)上有唯一的零点”,即“函数的图像有唯一公共点”。这道题就有一个常量a,一个变量x,这里就将常量a分离出来进而可以求。
扩展资料分离常数法主要用在在分式型函数中,当分式的分子和分母次数相同时,常可分离出一个常数来。