平方根的计算
平方根的计算如下:
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数,负数有两个共轭的纯虚平方根。
基础定义
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。规定:,或。一般地,“√ ̄”仅用来表示算术平方根,即非负数的非负平方根。
算术平方根定义:
如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根,记作。其中,a叫做被开方数。例如:因为2和-2的平方都是4,且只有2是正数,所以2就是4的算术平方根。
由于正数的平方根互为相反数,因此正数的平方根可分别记作和,可合写为。例如5的平方根可以分别记作和,可合写为。0的平方根仅有一个,就是0本身。而0本身也是非负数,因此0也是0的算术平方根。可记作。
求平方根教学重点难点
1.教学重点是用计算器求一个正数的平方根的程序,无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一。
2.教学难点准确用计算器求一个正数的平方根,由于开平方运算要用到第二功能键,学生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能教法建议。
3.在给学生讲解如何利用计算器求一个数的平方根时,应掌握方法。