线性方程组有几个解?
1个回答
展开全部
线性方程组的解的三种情况如下:
(1)唯一解
唯一解的情况非常好理解,就是每个变量均有唯一值,在高斯-诺尔当消元法中,对应的情况就是,增广矩阵中的系数矩阵A可以化简为单位矩阵。
实例如下:
可以看到,若矩阵的秩R==原线性方程组变量的个数(也是增广矩阵的列数)n,那么此时线性方程组有唯一解。
(2)无解
根据上一节中,无解的实例ex1,我们可以看到,若存在任意行有0=d(常数项)。那么线性方程组无解。因此这种情况,就无需看矩阵的秩与n的关系,可以直接通过是否存在“0=d”方程来判断。
(3)无穷多解
根据上一节中,无穷多解的实例ex2,可以很容易的发现。若矩阵的秩R<n,就一定有自由变量F的存在。
这里解释一下自由变量F:不是主元的变量就称作自由变量。
思考:为什么R<n,就一定存在自由变量。
因为有一行全为0,那么就一定存在主元的数量<变量的数量。
因此,结论是:若存在矩阵的秩R<n,那么线性方程组一定有无穷多解。
简介:
线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。对线性方程组的研究,中国比欧洲至少早1500年,记载在公元初《九章算术》方程章中。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询