线性代数方程组的零点存在唯一性定理

 我来答
郝姐说
高能答主

2023-07-03 · 感谢大家的关注!
郝姐说
采纳数:424 获赞数:14365

向TA提问 私信TA
展开全部

齐次线性方程组 Ax = 0 总有解;非齐次线性方程 Ax = b 当且仅当 r(A, b) = r(A) 时有解.非齐次线性方程 Ax = b 当 r(A, b) ≠ r(A) 时无解.齐次线性方程组 Ax = 0 当且仅当 r(A) = n 时有唯一解,即零解。

非齐次线性方程 Ax = b 当且仅当 r(A, b) = r(A) = n 时有唯一解.齐次线性方程组 Ax = 0 当 r(A) < n 时有无穷多解,即有非零解;非齐次线性方程 Ax = b 当 r(A, b) = r(A) < n 时有无穷多解。

解的存在唯一性定理是指方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义,另一方面由于能求得精确解的微分方程并不多,常微分方程的近似解法具有十分重要的意义,而解的存在唯一性又是近似解的前提,试想,如果解都不存在。

花费精力去求其近似解有什么意义呢?如果解存在但不唯一,但不知道要确定的是哪一个解,又要去近似的求其解,又是没有意义的。

解的存在唯一性定理一

定理1

如果函数f(x,y)在矩形域R上连续且关于y满足利普希茨条件,则方程dy/dx=f(x,y);存在唯一的解y=φ(x),定义于区间|x-x0|。

命题1

设y=φ(x)是方程的定义于区间x0。

命题2

对于所有的n,皮卡逐步逼近函数φn(x)在 x0。

命题3

函数序列{φn(x)} 在x0。

命题4

φn(x)是积分方程的定义于x0。

命题5

设ψ(x)是积分方程的定义于 x0。

以上内容来源:百度百科-解的存在唯一性定理

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式