二元函数可微的充要条件公式

 我来答
猫先生143
2023-06-14 · TA获得超过682个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:438万
展开全部

二元函数可微的充要条件公式介绍如下:

二元函数可微的充要条件公式:[f(x+dx,y+dy)-f(x,y)]是[(x^2+y^2)^1/2]的高阶无穷小。必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。

二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

二元函数的条件

1、二元函数可微的必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

2、二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

3、设平面点集D包含于R^2,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。

二元函数 可微性

定义

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微.

可微性的几何意义

可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微.

这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式