多元线性回归模型的基本假设有哪些

 我来答
炽热还坚强的才子Q
2023-06-16 · 超过122用户关注了TA
知道大有可为答主
回答量:2399
采纳率:0%
帮助的人:34.3万
展开全部

多元线性回归模型的基本假设如下:

1、随机误差项ε i 具有零均值和同方差,即:E(ε i )=0,D(ε i )=σ 2 。

2、随机误差项在不同样本点之间是相互独立的,不存在序列关系,即: Cov(ε i ,ε j )=0,(i≠j)。

3、随机误差项ε i 应服从正态分布,即:ε i ~N(0,σ 2 )。

4、自变量x 1 ,x 2 ,…,x p 是确定性变量,且它们之间是不相关的。

5、因变量与自变量x 1 ,x 2 ,…,x p 之间存在着显著的线性相关关系,即模型是线性的。

多元性线回归模型的优点

1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。

3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。

多元性线回归模型的缺点

有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式