基本不等式推导过程

 我来答
南柱子hh123
2023-05-28 · 超过177用户采纳过TA的回答
知道小有建树答主
回答量:456
采纳率:100%
帮助的人:6.7万
展开全部

基本不等式推导过程如下:

如果a、b都为实数,那么a^2+b^2≥2ab,当且仅当a=b时等号成立。  

证明如下:  

∵(a-b)^2≥0;

∴a^2+b^2-2ab≥0;

∴a^2+b^2≥2ab。

2、如果a、b、c都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c时等号成立。  

3、如果a、b都是正数,那么(a+b)/2≥√ab,当且仅当a=b时等号成立。(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b时等号成立。 )

和定积最大:当a+b=S时,ab≤S^2/4(a=b取等)。  积定和最小:当ab=P时,a+b≥2√P(a=b取等)。  均值不等式:如果a,b都为正数,那么√((a^2+b^2)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。

(当且仅当a=b时等号成立。)(其中√((a^2+b^2)/2)叫正数a,b的平方平均数也叫正数a,b的加权平均数;(a+b)/2叫正数a,b的算数平均数;

√ab正数a,b的几何平均数;2/(1/a+1/b)叫正数a,b的调和平均数)。同向不等式:不等号相同的两个或几个不等式叫同向不等式,例:2x+5>3与3x-2>5是同向不等式,异向不等式:不等号相反的两个不等式叫异向不等式。

基本不等式:

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。

技巧:

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式