正项级数的敛散性是如何定义的?

 我来答
分享社会民生
高粉答主

2023-05-29 · 热爱社会生活,了解人生百态
分享社会民生
采纳数:1248 获赞数:283347

向TA提问 私信TA
展开全部

如图所示:

若数项级数各项的符号都相同,则称它为同号级数。对于同号级数,只需研究各项都是由正数组成的级数,称它为正项级数。如果级数的各项都是负数,则它乘以-1后就得到一个正项级数,它们具有相同的敛散性。

级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。

因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。

扩展资料:

在级数理论中,正项级数是非常重要的一种,对一般级数的研究有时可以通过对正项级数的研究来获得结果,就像非负函数广义积分和一般广义积分的关系一样。

所谓正项级数是这样一类级数:级数的每一项都是非负的。正项级数收敛性的判别方法主要包括:利用部分和数列判别法、比较原则、比式判别法、根式判别法、积分判别法以及拉贝判别法等。

参考资料来源:百度百科-正项级数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式