到底什么是配方法,一元二次方程用配方法怎样解?

最好配上例题... 最好配上例题 展开
 我来答
白雪忘冬
高粉答主

推荐于2019-09-28 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376571

向TA提问 私信TA
展开全部

配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。

用配方法解一元二次方程的一般步骤:

1、把原方程化为的形式;

2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;

3、方程两边同时加上一次项系数一半的平方;

4、再把方程左边配成一个完全平方式,右边化为一个常数;

5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。

例:  解方程:3+8 x-3=0

解:3+8 x-3=0

+8/3x-1=0 (化1:把二次项系数化为1;)

+8/3x=1  (移项:把常数项移到方程的右边;)

+8/3x+=1+( 配方:方程两边都加上一次项系数绝对值一半的平方;

=

(变形:方程左边分解因式,右边合并同类项;)

x+4/3=± 5/3  (开方:根据平方根的意义,方程两边开平方;)

x+4/3= 5/3 或  x+4/3=-5/3 ( 求解:解一元一次方程;)

所以x1=1/3, x2=-3  ( 定解:写出原方程的解)

扩展资料

1、配方法解一元二次方程的口诀:一除二移三配四开方。

2、配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方。

3、配方法的理论依据是完全平方公式。

配方法的应用

1、用于比较大小

在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。

2、用于求待定字母的值

配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。

3、用于求最值

“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。

4、用于证明

“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.

参考资料来源:百度百科-配方法

低调侃大山
推荐于2017-09-27 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374588

向TA提问 私信TA
展开全部
1. 定义:

配方法:将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
2. 解一元二次方程的配方法:
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

3. 示例:

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,
x²+2×3/2x=-1
x²+2×3/2x+(3/2)²=-1+(3/2)²
(x+3/2)²=5/4
x+3/2=±√5/2

x1,2=(-3±√5)/2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zjmjt
推荐于2017-09-29
知道答主
回答量:28
采纳率:0%
帮助的人:0
展开全部
配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2

方程左边成为一个完全平方式:(x+ )2=

当b2-4ac≥0时,x+ =±

∴x=(这就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:将常数项移到方程右边 3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2

配方:(x-)2=
直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2=
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
涵娘锐妈
2020-08-04
知道答主
回答量:1
采纳率:0%
帮助的人:577
展开全部
把一个一元二次方程变形为(x+h)²=k(h.k为常数)的形式,当k≥0时,就可以用直接开平方法求出方程的解.这种节一元二次方程的方法叫做配方法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
招俊蕊7
2008-09-13 · TA获得超过335个赞
知道答主
回答量:59
采纳率:0%
帮助的人:0
展开全部
数学一元二次方程中的一种解法(其他两种为公式法和分解法)
具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25
5.(x-1.5)^2=0.25
6.x-1.5=±0.5
7.x1=2
x2=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式