高中函数周期性的问题
周期函数f(x)是定义在R上的奇函数,且满足f(x+2)+f(x)=0,则f(x)的周期为_____求这题目的详细过程,解题思路~~~...
周期函数f(x)是定义在R上的奇函数,且满足f(x+2)+f(x)=0,则f(x)的周期为_____
求这题目的详细过程,解题思路~~~ 展开
求这题目的详细过程,解题思路~~~ 展开
展开全部
要求f(x)的周期的途径有几个:
1.取一个简单且符合题目要求的图象解决它
2.根据f(x+T)=f(x)和条件求出T值
从题目可知有两个条件:
1.f(x)是定义在R上的奇函数
2.f(x+2)+f(x)=0
但由2可以求出了,列出两个关系式:
1.f(x+2)+f(x)=0
2.f(x+4)+f(x+2)=0
两式相减得f(x+4)-f(x)=0即T=4
注:条件1.可绕一个弯子得:
f(x+2)=-f(x)=f(-x)将-x=x
f(-x+2)=f(x) f(-x+4)=f(x+2)=f(-x)
再将-x=x得f(x+4)=f(x)
1.取一个简单且符合题目要求的图象解决它
2.根据f(x+T)=f(x)和条件求出T值
从题目可知有两个条件:
1.f(x)是定义在R上的奇函数
2.f(x+2)+f(x)=0
但由2可以求出了,列出两个关系式:
1.f(x+2)+f(x)=0
2.f(x+4)+f(x+2)=0
两式相减得f(x+4)-f(x)=0即T=4
注:条件1.可绕一个弯子得:
f(x+2)=-f(x)=f(-x)将-x=x
f(-x+2)=f(x) f(-x+4)=f(x+2)=f(-x)
再将-x=x得f(x+4)=f(x)
展开全部
f(x+2)+f(x)=0
- f(x+2) = f(x) (1)
f(x+2) = - f(x+4) (2)
(1)+(2)
f(x) - f(x+4) = 0
f(x) = f(x+4)
所以f(x)的周期为4
- f(x+2) = f(x) (1)
f(x+2) = - f(x+4) (2)
(1)+(2)
f(x) - f(x+4) = 0
f(x) = f(x+4)
所以f(x)的周期为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)是定义在R上的奇函数
f(0)=0
f(x+2)+f(x)=0
得f(x+2)= -f(x)
-f(x)=f(-x)
f(x+2)= f(-x) 令x=0 则 f(2)= -f(0)=0=f(0)
所以周期是2
最好,最快是画头像法
f(0)=0
f(x+2)+f(x)=0
得f(x+2)= -f(x)
-f(x)=f(-x)
f(x+2)= f(-x) 令x=0 则 f(2)= -f(0)=0=f(0)
所以周期是2
最好,最快是画头像法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 f(x+a)=f(x+b) T=/b-a/
2 f(x+a)=-f(x) T=2a
3 f(x+a)=-1/f(x) T=2a
4 f(x+a)=1/f(x) T=2a
5 f(x+a)=[1+f(x)]/[1-f(x)] T=4a
2 f(x+a)=-f(x) T=2a
3 f(x+a)=-1/f(x) T=2a
4 f(x+a)=1/f(x) T=2a
5 f(x+a)=[1+f(x)]/[1-f(x)] T=4a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
4
f(x+2)+f(x)=0
f(x+4)+f(x+2)=0
f(x)=f(x+4)
f(x+2)+f(x)=0
f(x+4)+f(x+2)=0
f(x)=f(x+4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+2)+f(x)=0
f(x+2)=-f(x)
f(x)=-f(x+2)..............a
f(x+2)=-f(x+2+2)=-f(x+4)..b
b代入a
f(x)=-[-f(x+4)]=f(x+4)
周期为4
f(x+2)=-f(x)
f(x)=-f(x+2)..............a
f(x+2)=-f(x+2+2)=-f(x+4)..b
b代入a
f(x)=-[-f(x+4)]=f(x+4)
周期为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询