若实数a,b,c满足a+b+c=0,abc=1,求证:a,b,c中至少有一个数不小于3/2

fengsuirenshi
2008-09-05 · TA获得超过1398个赞
知道小有建树答主
回答量:311
采纳率:0%
帮助的人:130万
展开全部
反证法
从题目中可知a,b,c中必然有两个负数一个正数
不妨设a>0,b<0,c<0
反证
令3/2>a
因为b+c=-a,bc=1/a,联想到韦达定理
令b,c为方程x^2+ax+1/a=0的两根
因为b,c为实数,该方程必有解
所以Δ=a^2-4*1/a≥0
所以a^3≥4
又因为27/8>a^3
且4>27/8
所以假设不成立
所以三个数中必定有一个大于3/2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式