空集不算集合的元素。
空集的定义:不含任何元素的集合称为空集。空集的性质:空集是一切集合的子集。空集是任何非空集合的真子集。
空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的。
扩展资料:
用符号Ø或者{ }表示。
注意:{Ø}是有一个Ø元素的集合,而不是空集。
在LaTeX中空集表示代码 \emptyset 。
0是一个数,不是集合。
{0}是一个集合,集合只有0这个元素。
Ø是一个集合,但是不含任何元素。
{Ø}是一个非空集合,集合只有空集这个元素。
对任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A;
对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A;
对任意非空集合 A,空集是 A的真子集:∀A,,,若A≠Ø,则Ø 真包含于 A。
对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø;
对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø;
空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A。
空集的元素个数(即它的势)为零;
特别的,空集是有限的:| Ø | = 0;
对于全集,空集的补集为全集:CUØ=U。
集合论中,若两个集合有相同的元素,则它们相等。那么,所有的空集都是相等的,即空集是唯一的。
考虑到空集是实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,因为所有的有限集合是紧致的,所以空集是紧致集合,。
空集的闭包是空集。
参考资料:百度百科-空集
空集的定义:不含任何元素的集合称为空集。空集的性质:空集是一切集合的子集。空集是任何非空集合的真子集。
空集不是无;它是内部没有元素的集合,而集合就是有。这通常是初学者的一个难点。将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的。
即空集是任意集合A的子集。按照子集的定义,这条性质是说 { } 的每个元素x都属于A。若这条性质不为真,那 { } 中至少有一个元素不在A中。由于{ }中没有元素,也就没有{ }的元素不属于A了,得到{ }的每个元素都属于 A, 即{ }是A的子集。
若A为集合,则恰好存在从{ }到A的函数f,即空函数。结果,空集是集合和函数的范畴的唯一初始对象。
空集只能通过一种方式转变为拓扑空间,即通过定义空集为开集;这个空拓扑空间是有连续映射的拓扑空间的范畴的唯一初始对象。
2014-02-28
2014-02-28